慢速、超慢速扩张洋中脊三维地震结构研究进展与展望
收稿日期: 2010-04-29
修回日期: 2010-07-19
网络出版日期: 2010-12-15
基金资助
中国科学院知识创新工程项目(KZCX2-YW-Q05-04); 大洋“十一五”课题(DYXM-115-02-3-01); 国家“863”项目(2008AA093001);
科技部“973”项目(2007CB411701); 国家自然科学基金项目(41076029); 中国科学院南海海洋研究所领域前沿项目(LYQY200704)
Research development and prospect on three-dimensional seismic structures of slow and ultraslow spreading ocean ridges
Received date: 2010-04-29
Revised date: 2010-07-19
Online published: 2010-12-15
Supported by
中国科学院知识创新工程项目(KZCX2-YW-Q05-04); 大洋“十一五”课题(DYXM-115-02-3-01); 国家“863”项目(2008AA093001);
科技部“973”项目(2007CB411701); 国家自然科学基金项目(41076029); 中国科学院南海海洋研究所领域前沿项目(LYQY200704)
慢速与超慢速扩张洋脊是研究岩浆活动、构造运动、热液循环等相互作用的最佳场所; 其复杂的三维空间的地震结构是构建构造动力学机制的基础。文章首先结合国际深海研究发展趋势, 回顾了慢速扩张洋脊的三维 地震结构研究进展, 发现慢速扩张洋中脊与快速洋脊相似, 也存在岩浆房或熔融体; 然后, 重点结合我国2010年1—3月首次在西南印度洋洋中脊开展的三维地震探测实验, 提出了今后超慢速洋中脊的重要研究方向; 此次地震数据初步处理结果表明, 数据质量良好, 为下一步三维层析成像研究打下坚实基础; 相信此次研究将在超慢速扩张洋脊的形成演化机制上取得突破性进展, 提升我国在国际大洋中脊研究中的地位。
赵明辉,丘学林,李家彪,陈永顺,阮爱国,敖威,王春龙,李守军,张佳政,吴振利,牛雄伟 . 慢速、超慢速扩张洋中脊三维地震结构研究进展与展望[J]. 热带海洋学报, 2010 , 29(6) : 1 -7 . DOI: 10.11978/j.issn.1009-5470.2010.06.001
Slow and ultraslow spreading ridges are the key areas for studying interplay among magmatism, tectonics, and hy-drothermal circulation comparing to the fast spreading ridges. Their complicated three-dimensional (3D) seismic structures are the basis of finding their tectonic dynamic mechanism. The research on the 3D seismic structures is reviewed in terms of slow spreading ridges in deep oceans, including its developing international research trend. The new experiments have detected a magma chamber or a melt body at a slow spreading ridge, same as at a fast spreading ridge. The 3D seismic survey for the first time was carried out on the southwest Indian Ocean Ridge from January to March in 2010. The key research aspects are then put forward based on these seismic experiment data. Its preliminary disposing result of the seismic data indicates that the high quality of the seismic data is the strong foundation of the 3D tomography. It is promising to make breakthrough in mechanism on ultraslow spreading ridges. The research will surely promote the Chinese status in the field of international ocean ridges.
[1] 孙枢. 将我国深海大洋研究推向新阶段 [J]. 地球科学进展, 2003, 18(5): 653.
[2] 汪品先. 走向地球系统科学的必由之路 [J]. 地球科学进展, 2003, 18(5): 795–796.
[3] 汪品先. 穿凿地球系统的时间隧道 [J]. 中国科学: D辑, 2009, 39(10): 1313–1338.
[4] 曾志刚, 翟世奎, 杜安道. 大西洋洋中脊TAG热液区中块状硫化物的Os同位素研究[J]. 沉积学报, 2002, 20(3): 394–398.
[5] 卜文瑞, 石学法. 大洋中脊地质研究的进展与趋势 [J]. 海洋科学进展, 2003, 21(4): 482–486.
[6] 薛发玉, 翟世奎.大洋中脊研究进展 [J]. 海洋科学, 2006, 30(3): 66–72.
[7] 陈永顺. 海底扩张和大洋中脊动力学问题概述[C]//地球的结构、演化和动力学. 北京: 高等教育出版社, 2003. 283–317.
[8] 中国大洋钻探学术委员会. 中国加入综合大洋钻探(IODP) 科学计划(2003—2013) [J]. 地球科学进展, 2003, 18(5): 662–665.
[9] 田丽艳, 林间. 全球大洋中脊研究十年科学规划(2004—2013) [J]. 海洋地质动态, 2004, 20(3): 10–15.
[10] PURDY G M L, KONG S L, CHRISTESON G L, et al. Relationship between spreading rate and the seismic structure of mid-ocean ridge [J]. Nature, 1992, 355: 815–817.
[11] MORGAN J P, CHEN Y C. Dependence of ridge-axis morphology on magma supply and spreading rate [J]. Nature, 1993, 364: 706–708.
[12] DICK H J B, LIN J, SCHOUTEN H. An ultraslow-spreading class of ocean ridge [J]. Nature, 2003, 426: 405–412.
[13] CANNAT M, ROMMEVAUX-JESTIN C, SAUTER D, et al. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E) [J]. Journal of Geophysical Research, 1999, 104: 2825–2843.
[14] SAUTER D, PATRIAT P, ROMMEVAUX-JESTIN C, et al. The Southwest Indian Ridge between 49°15¢E and 57°E: Focused accretion and magma redistribution [J]. Earth and Planetary Science Letter, 2001, 192: 303–317.
[15] SINHA M, CONSTABLE S, PEIRCE C, et al. Magmatic processes at slow spreading ridges: implications of the RAMESSES experiment at 57°45¢N on the Mid-Atlantic Ridge [J]. Geophysical Journal International, 1998, 135: 731–745.
[16] CHEN Y J. Dependence of crustal accretion and ridge axis topography on spreading rate, mantle temperature, and hydrothermal cooling[C]//DILEK Y, MOORES E M, ELTHON D. Ophiolites and oceanic crust—New insights from field studies and the Ocean Drilling Program:
[17] KONG L S L, Solomon S C ,Purdy G M. Microearthquake characteristics of a mid-ocean ridge along-axis high [J]. Journal of Geophysical Research, 1992, 97: 1659–1685.
[18] HOOFT E E E, DETRICK R S, TOOMEY D R, et al. Crus-tal thickness and structure along three contrasting spreading segments of the Mid-Atlantic Ridge, 33.5°−35°N [J]. Journal of Geophysical Research, 2000, 105(B4): 8205-8226.
[19] CANALES J P, COLLINS J A, ESCARTIN J, et al. Seismic structure across the rift valley of the Mid-Atlantic Ridge at 23°20¢N (MARK area): Implications for crustal accretion processes at slow spreading ridges [J]. Journal of Geophysical Research, 2000, 105: 28, 411–28,425.
[20] CANALES J P, SINGH S, CARBOTTE S, et al. Seismic evidence for variations in axial magma chamber properties along the southern Juan de Fuca Ridge [J]. Earth and Planetary Science Letter, 2006, 246: 353–366.
[21] NAVIN D, PEIRCE C, and SINHA M. The RAMESSES experiment-II Evidence for accumulated melt beneath a slow spreading ridge from wide-angle refraction and multichannel reflection seismic profiles [J]. Geophysical Journal Interna-
tional, 1998, 135: 746–772.
[22] DUNN R A, LEKIC V, DETRICK R S, et al. Three-dimensional seismic structure of the Mid-Atlantic Ridge (35°N): Evidence for focused melt supply and lower crustal dike injection[J]. Journal of Geophysical Research, 2005, 110: B09101. doi: 10.1029/2004JB003473.
[23] SEHER T, CRAWFORD W C, SINGH S C, et al. Crustal velocity structure of the Lucky Strike segment of the Mid-Atlantic Ridge at 37°N from seismic refraction measurements [J]. Journal of Geophysical Research, 2010, 115: B03103. doi: 10.1029/2009JB006650.
[24] CHEN Y J. Influence of the
low hydrothermal activity? [J]. Journal of Geophysical Research, 2003, 108 (B11): 2524–2536. doi: 10.1029/ 2001JB000816.
[25] HOSFORD A, LIN J, and DETRICK R S. Crustal evolution over the last
[26] DETRICK R, NEEDHAM H, and RENARD V. Gravity anomalies and crustal thickness variations along the Mid-atlantic Ridge between 33°N and 40°N [J]. Journal of Geophysical Research, 1995, 100 (B3): 3767–3787.
[27] PARSON L, GRÁCIA E, COLLER D, et al. Second-order segmentation; the relationship between volcanism and tectonism at the MAR, 38°N−35°40¢N [J]. Earth and Planetary Science Letter, 2000, 178: 231–251.
[28] TAO C H, LIN J, GUO S, et al. Discovery of the first active hydrothermal vent field at the ultraslow spreading Southwest Indian Ridge [J]. InterRidge News, 2007, 16: 25–26.
[29] 阮爱国, 李家彪, 陈永顺, 等. 国产I
[30] SINGH S C, CRAWFORD W C, CARTON H, et al. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field [J]. Nature, 2006, 442: 1029–1032.
[31] BAZIN S, HARDING A J, KENT G M, et al. A three-dimensional study of crustal low velocity region beneath the 9°03¢N overlapping spreading center [J]. Geophysical Research Letters, 2003, 30(2): 1039. doi: 10.1029/ 2002GL015137.
[32] CANN J R, STRENS M R, RICE A. A simple magma-driven thermal balance model for the formation of volcanogenic massive sulphides [J]. Earth and Planetary Science Letter, 1985, 76: 123–134.
[33] LISTER C R B. On the penetration of water into hot rock [J]. Geophys J R Astron Soc, 1974, 39: 465–509.
[34] WILCOCK W S D, DELANEY J R. Mid-ocean ridge sulfide deposits: Evidence for heat extraction from magma chambers or cracking fronts? [J]. Earth and Planetary Science Letter, 1996, 145: 49–64.
[35] CANN J R, STRENS M R. Black smokers fuelled by freezing magma [J]. Nature, 1982, 298: 147–149.
[36] MARTINEZ F, TAYLOR B, BAKER E T, et al. Opposing trends in crustal thickness and spreading rate along the back-arc
[37] DUNN R A, TOOMEY D R, and SOLOMON S C. Three dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30¢N [J]. Journal of Geophysical Research, 2000, 105: 23537–23555.
QIU J. China outlines deep-sea ambitions [J]. Nature, 2010, 466: 166
/
〈 | 〉 |