海洋生物学

秋茄叶对复合重金属的胁迫反应及其积累能力研究

展开
  • 1. 中国科学院南海海洋研究所, 中国科学院热带海洋环境动力学重点实验室, 广东 广州 510301; 2. 中国科学院大亚湾海洋生物综合实验站, 广东 深圳 518121; 3. 中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东 广州 510640
黄国勇(1977—), 男, 江西省进贤县人, 博士, 主要从事环境生态毒理学研究。E-mail: huang_gyh@sina.com

收稿日期: 2009-02-12

  修回日期: 2009-06-03

  网络出版日期: 2010-12-15

基金资助

国家自然科学基金项目(41076070); 中国科学院知识创新工程重要方向性项目(KSCX2-SW-132);“十一五”国家科技支撑
计划重点项目(2009BADB2B0606)

Study on stress responses and bioaccumulation of multiple heavy metals by the leaves of Kandelia candel

Expand
  • 1. Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; 2. National Field Station of Marine Ecosystem at Daya Bay, Shenzhen 518121, China; 3. State Key Laboratory of Organic Geo-chemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
黄国勇(1977—), 男, 江西省进贤县人, 博士, 主要从事环境生态毒理学研究。E-mail: huang_gyh@sina.com

Received date: 2009-02-12

  Revised date: 2009-06-03

  Online published: 2010-12-15

Supported by

国家自然科学基金项目(41076070); 中国科学院知识创新工程重要方向性项目(KSCX2-SW-132);“十一五”国家科技支撑
计划重点项目(2009BADB2B0606)

摘要

为了探究重金属胁迫对红树植物秋茄Kandelia candel(L. Druce)生理指标的影响, 通过砂培试验研究了秋茄在5个不同级别(T0、T1、T2、T3 和 T4)的复合重金属(镉、铅和汞)处理30d后某些生理特性的变化。结果表明, 随着复合重金属胁迫浓度的增加, 秋茄叶片吸收重金属量增加, 而叶绿素含量明显减少。抗坏血酸(AsA)含量在T3达到最大值, 但在T4减少到对照水平。当重金属处理浓度大于T1时, 谷胱甘肽(GSH)含量显著增加。秋茄叶抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性变化趋势与AsA活性变化相似, 呈先升后降趋势, 在T3时酶活性都达到最大值。重金属处理对谷胱甘肽过氧化物酶(GPX)活性有显著诱导作用。综合实验结果, 可初步判断秋茄叶能积累和忍受一定量的重金属; 为了减少重金属胁迫造成的氧化伤害, 秋茄叶片通过调节体内的抗氧化剂含量和抗氧化酶活性来抵御活性氧的攻击。

本文引用格式

黄国勇,王友绍,孙翠慈,宋晖,吴梅林,董俊德 . 秋茄叶对复合重金属的胁迫反应及其积累能力研究[J]. 热带海洋学报, 2010 , 29(6) : 104 -109 . DOI: 10.11978/j.issn.1009-5470.2010.06.104

Abstract

In order to probe into physiological effects of heavy metals on mangrove plant Kandelia candel, the changes of some physiological characteristics in the seedlings of Kandelia candel exposed to five various concentrations (T0, T1, T3, and T4) of multiple heavy metals (Cd, Pb, and Hg) for 30 days were studied using sand culture method. The results show that the concentration of Cd, Pb, and Hg in the leaves of Kandelia candel increased with increasing concentration of multiple heavy metals in the growth solution. The toxic effect and oxidative stress caused by heavy metals were evident by the reduction in photosynthetic pigments. Ascrobate (AsA) content increased up to T3 while down at T4. The content of glutathione (GSH) significantly increased when Kandelia candel was exposed to T2 and above. The activities of ascorbate peroxidase (APX) and glutathione reductase (GR) followed the same trends as AsA, which first increased up to T3 and then decreased. Glutathione peroxidase (GPX) activity showed significant induction at all heavy metal treatment. The results of the present study suggest that Kandelia candel was able to accumulate and tolerate heavy metals. Kandelia candel responded to heavy metals induced oxidative stress by modulating non-enzymatic antioxidants and enzymatic antioxidants.

参考文献

[1]       覃光球, 严重玲, 韦莉莉. 秋茄幼苗叶片单宁、可溶性糖和脯氨酸含量对Cd胁迫的响应[J]. 生态学报, 2006, 26(10): 3366-3371.

[2]       郑逢中, 林鹏, 郑文教. 红树植物秋茄幼苗对耐性的研究[J]. 生态学报, 1994, 14(4): 408-414.

[3]       CHEN G Z, MAO S Y, TAM N F Y, et al. Effect of synthetic wastewater on young Kandelia candel plants growing under greenhouse conditions[J]. Hydrobiologia, 1995, 295: 263-273.

[4]       TAM N F Y, WONG Y S. Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage[J]. Hydrobiologia, 1997, 352: 67-75.

[5]       YIM M W, TAM N F Y. Effects of wastewater-borne heavy metals on mangrove plants and soil microbial activites[J]. Mar Pollut Bull, 1999, 39: 179-186.

[6]       ZHANG F Q, WANG Y S, LOU Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (K. candel and B. gymnorrhiza)[J]. Chemosphere, 2007, 67: 44-45.

[7]       孙健, 铁柏清, 钱湛, . 复合重金属胁迫对灯心草生长及其积累特性的影响[J]. 安全与环境工程. 2006, 13(3): 17-28.

[8]       中华人民共和国国家标准. 食品卫生检验方法理化部分()[M]. 北京: 中国标准出版社, 2004. 71-129.

[9]       李合生, 孙群, 赵世杰, . 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2002.

[10]    KNÖRZER O C, DURNER J, BÖGER P. Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress[J]. Physiol Plant, 1996, 97: 388-396.

[11]    NAGALAKSHMI N, PRASAD M N V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus[J]. Plant Sci, 2001, 160: 291-299.

[12]    NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22: 867-880.

[13]    FOYER C H, HALLIWELL B. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role on ascorbic acid metabolism[J]. Planta, 1976, 133: 21-25.

[14]    史红梅, 胡德文, 何之常, . 不同细胞质雄性不育小麦中谷胱甘肽过氧化物酶活性比较[J]. 武汉大学学报:自然科学版, 2001, 47(6): 771-774.

[15]    MACFARLANE G R, BURCHETT M D. Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh[J]. Mar Pollut Bull, 2001, 42: 233-240.

[16]    SOMASHEKARAIAH B V, PADAMAJA K, PRASAD R K. Phytotoxieity of cadmium ions on germination seedings of mung bean (Phaseolus vulgarize): Involvement of lipid peroxides in chlorophyll degradation[J]. Plant Physio1, 1992, 65: 85-89.

[17]    孙小霞. 高羊茅对递进胁迫的生理响应[J]. 河南科技大学学报:自然科学版, 2006, 27(6): 75-78.

[18]    NOCTOR G, FOYER C H. Ascorbate and glutathione: keeping active oxygen under control[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 249-279.

[19]    LIU Y G, WANG X, ZENG G M, et al. Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.)[J]. Chemosphere, 2007, 69: 99-107.

[20]    麦维军, 王颖, 梁承邺, . 谷胱甘肽在植物抗逆中的作用[J]. 广西植物, 2005, 25(6): 570-575.

[21]    赵耀, 吴珍龄, 杨盛山. 亚硒酸钠对小麦幼苗中谷胱甘肽过氧化物酶和谷胱甘肽转硫酶活性以及谷胱甘肽含量的影[J]. 植物生理学通讯, 2004, 40(2): 178-180.

文章导航

/