海洋水文学

暖池季节变化的数值模拟及其对海表热力和动力强迫的敏感性

展开
  • 1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029; 2. 中国科学院南海海洋研究所, 广东 广州 510301
俞永强(1968—), 男, 辽宁省大连市人, 从事气候数值模拟研究。E-mail: yyq@lasg.iap.ac.cn

收稿日期: 2009-07-27

  修回日期: 2009-10-12

  网络出版日期: 2011-03-16

基金资助

中国科学院知识创新重要方向项目(KZCX2-YW-214); 国家自然科学基金项目(40975065, 40821092); 科技部“973”计划项目
(2006CB400506)

Numerical simulation of seasonal cycle in the warm pool and its sensitivity to surface heat flux and momentum forcing

Expand
  • 1. LASG, Institute of Atmospheric Physics, Beijing 100029, China; 2. South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China
俞永强(1968—), 男, 辽宁省大连市人, 从事气候数值模拟研究。E-mail: yyq@lasg.iap.ac.cn

Received date: 2009-07-27

  Revised date: 2009-10-12

  Online published: 2011-03-16

Supported by

中国科学院知识创新重要方向项目(KZCX2-YW-214); 国家自然科学基金项目(40975065, 40821092); 科技部“973”计划项目
(2006CB400506)

摘要

对比3套不同来源的海表热通量和风应力资料在热带太平洋和印度洋区域的差异, 然后把这些海表强迫场作为一个全球海洋环流模式(LICOM)的上边界条件, 进行动力和热力强迫的敏感性试验。通过对比分析试验结果, 评估了LICOM对印度洋和西太平洋暖池季节变化的模拟能力, 探讨了印度洋和西太平洋暖池对动力和热力强迫的敏感性。首先, 模式结果表明LICOM能较真实地模拟出印度洋和西太平洋暖池面积和强度的季节变化特征以及两海区暖池季节变化的差异, 而且上层海洋垂向分层的加密能有效改善混合层深度季节变化的模拟。其次, 模式中暖池的季节变化基本由海表净热通量和混合层深度的季节变化共同决定, 但是试验结果中难以反映垂向挾卷和湍流混合对暖池区混合层深度的影响, 可能原因是气候态月平均强迫场时间分辨率较粗, 不能真实反映一些重要的天气尺度过程对混合层动力过程的影响, 故有必要增加强迫场时间分辨率做进一步研究。最后,不同强迫场的敏感性试验对比分析结果表明, 印度洋暖池对海表动力和热力强迫场的差异均较为敏感, 而西太平洋暖池则只对海表热量强迫场的差异较为敏感, 对动力强迫场的差异不敏感。

本文引用格式

俞永强,李超,王东晓,刘海龙 . 暖池季节变化的数值模拟及其对海表热力和动力强迫的敏感性[J]. 热带海洋学报, 2011 , 30(1) : 1 -10 . DOI: 10.11978/j.issn.1009-5470.2011.01.001

Abstract

Both heat and momentum fluxes from three sets of data sources are compared in this study, and are used as the up-per boundary condition of a global oceanic general circulation model (OGCM) with which sensitivity experiments to these fluxes are conducted. Through comparison among numerical sensitivity experiments, the authors evaluate the model’s ability in simulating seasonal cycle of the equatorial Indian and Pacific Ocean warm pool, and explore its sensitivity to surface heat and momentum forcing. Firstly, numerical simulations show that the ocean model can reproduce realistic seasonal cycle of the extension and magnitude of the warm pool in the equatorial western Pacific and Indian oceans and the difference in the sea-sonal cycle between these two ocean basins. Increased vertical resolution in the upper model ocean can improve effectively the simulated seasonal cycle of surface mixed layer depth. Secondly, the simulated seasonal cycle of the warm pool basically de-pends on both seasonal cycle of heat fluxes and mixed layer depth, but the simulations can hardly reflect the impact from the vertical entrainment and turbulent mixing, which is probably resulted from coarse temporal resolution in the external forcing fields; as a result, some important synoptic processes are not included in turbulent mixing, thus it is necessary to increase the temporal resolution of the external forcing in future. Finally, inter-comparison among the numerical experiments forced with different heat and momentum fluxes shows that the equatorial Indian Ocean warm pool is sensitive to differences in both the heat and mo-mentum fluxes, but the equatorial western Pacific Ocean warm pool is only sensitive to the differences in the heat fluxes.

参考文献

[1]       RAMANATHAN V, COLLINS W. Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño[J]. Nature, 1991, 351: 27–32.

[2]       WALISER D E, GRAHAM N E. Convective cloud systems and warm-pool sea-surface temperatures—Coupled interactions and self-regulation[J]. J Geophys Res, 1993, 98D: 12881–12893.

[3]       Fu R, DELGENIO A D, ROSSOW W B, et al. Cirrus cloud thermostat for tropical sea surface temperatures tested using satellite data[J]. Nature, 1992, 358: 394–397.

[4]       DELGENIOA D, KOVARI W. Climatic properties of tropical precipitating convection under varying environmental conditions[J]. J Climate, 2002,15: 2597–2615.

[5]       HARTMANN D L, MICHELSEN M L. Large-scale effects on the regulation of tropical sea surface temperature [J]. J Climate, 1993, 6: 2049–2062.

[6]       ZHANG G J, RAMANATHAN V, MCPHADEN M J. Convection-evaporation feedback in the equatorial Pacific[J]. J Climate, 1995, 8: 3040–3051.

[7]       PIERRHUMBERT R T. Thermostats, radiator fins, and the runaway greenhouse[J]. J Atmos Sci, 1995, 52: 1784–1806.

[8]       LARSON K, HARTMANN D L, KLEIN S A. On the role of clouds, water vapor, circulation, and boundary layer structure on the sensitivity of the tropical climate[J]. J Climate, 1999, 12: 2359–2374.

[9]       MILLER R L. Tropical thermostats and low cloud cover[J]. J Climate, 1997, 10: 409–440.

[10]    SUN D-Z, LIU Z. Dynamic ocean–atmosphere coupling: A thermostat for the tropics[J]. Science, 1996, 272: 1148–1150.

[11]    CLEMENT A C, SEAGER R, CANE M A, et al. An ocean dynamical thermostat[J]. J Climate, 1996, 9: 2190–2196.

[12]    CLEMENT A C, SEAGER R. Climate and the tropical oceans[J]. J Climate, 1999, 12: 3384–3401.

[13]    VINAYACHANDRAN P N, SHETYE S R. The warm pool in the Indian Ocean[J]. Proc Indian Acad SciEarth & Planetary Sci., 1991,100: 165-175.

[14]    周天军, 张学洪.印度洋海气热通量交换研究[J].大气科学, 2002, 26(2): 161170.

[15]    RAO R R, MOLINARI R L, FIESTA J F. Evolution of the climatological near-surface thermal structure of the tropical Indian Ocean: 1. Description of mean monthly mixed layer depth, and sea surface temperature, surface current, and surface meteorological fields[J]. Journal of Geophysical Research, 1989, 105: 985–1015.

[16]    UNNIKRISHNANA S, KUMAR S P, NAVELKAR G S. Large-scale processes in the upper layers of the Indian Ocean inferred from temperature climatology[J]. J Mar Res, 1997, 55: 93-115.

[17]    CLEMENT A C, SEAGER R, MURTUGUDDE R. Why are there tropical warm pools? [J] J Climate, 2005, 18: 5294-5311.

[18]    刘海龙. 高分辨率海洋环流模式和热带太平洋上层环流的模拟研究[D]. 北京:中国科学院大气物理研究所, 2002.

[19]    刘海龙, 俞永强, 李薇, . LASG/IAP气候系统海洋模式(LICOM1.0)参考手册[R]//大气科学和地球流体力学数值模拟国家重点实验室(LASG)技术报告特刊. 北京: 科学出版社, 2004: 1-108.

[20]    张学洪, 俞永强, 宇如聪, . 一个大洋环流模式和相应的海气耦合模式的评估 I. 热带太平洋的年平均状态[J]. 大气科学, 1003, 27: 949-970.

[21]    LIU HAILONG, ZHANG XUEHONG, LI WEI, et al. An eddy-permitting oceanic general circulation model and its preliminary evaluation[J]. Adv Atmos Sci, 2004, 21: 675-690.

[22]    GENT P R, MCWILLIAMS J C. Isopycnal mixing in ocean circulation models[J]. J Phys Oecanogr, 1990, 20: 150-155.

[23]    PACANOWSKIR C, PHILANDER G. Parameterization of vertical mixing in numerical models of the tropical ocean[J]. J Phys Oceanogr, 1981, 11: 1442-1451.

[24]    FRANK R. An atlas of surface fluxes based on the ECMWF re-analysisa climatological dataset to force global ocean general circulation models[R]//Report No. 323. Hamburg: Max-Planck- Institut für Meteorologie, 2001: 1-31.

[25]    STEPHENS C, ANTONOV J I, BOYER T P, et al. World Ocean Atlas 2001, Volume 1: Temperature[C]//LEVITUS S. NOAA Atlas NESDIS 49, U.S. Government Printing Office, Wash, D C, 2002: 1-167. CD-ROMs.

[26]    YU YONGQIANG, ZHNEG WEIPENG, WANG BIN, et al. The IAP Flexible Global Ocean-Atmosphere-Land System Model versions g1.0 and g1.1[J]. Adv Atmos Sci, 2010, doi: 10.1007/s00376-010-9112-5.

[27]    YU YONGQINAG, SUN DE-ZHENG. Response of ENSO to subtropical cooling: A study using the IAP coupled model[J]. J Climate, 2009, 22: 5902-5917.

[28]    YU YONGQIANG, ZHI HAI, WANG BIN, et al. Coupled model simulations of climate changes in the 20th century and beyond[J]. Adv Atmos Sci, 2008, 25: 641-654.

[29]    俞永强, 郑伟鹏, 刘海龙, . LASG耦合气候系统模式FGCM-1.0[J]. 地球物理学报, 2007, 50: 1677-1687.

[30]    YU YONGQINAG, ZHANG XUEHONG, GUO YUFU. Global coupled ocean- atmosphere general circulation models in LASG/IAP[J]. Adv Atmos Sci, 2004, 21: 444-455.

[31]    YU YONGQIANG, YU RUCONG, ZHANG XUEHONG, et al. A flexible global coupled climate model[J]. Adv Atmos Sci, 2002, 19: 169-190.

[32]    GIBSON J K, KALLBERG P, UPPALA S, et al. ERA Description, ECMWF Reanalysis Project Report Series 1[R]. European Center for Medium Range Weather Forecast, Reading, UK. 1997: 1-66.

[33]    JOSEY S A, KENT E C, TAYLOR P K. The Southampton Oceanography Centre (SOC) ocean-atmosphere heat, momentum and freshwater flux atlas[R]. Southampton Oceanography Centre Report No. 6, 1998: 1-25.

[34]    HOFFMAN R N, LEIDNER S M. An introduction to the near-real time QuikSCAT data[J]. Wea Forecasting, 2005, 20: 476–493.

[35]    KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 1996, 77: 437-471.

[36]    YU L, WELLER R A, SUN B. Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988-1999) by a synthesis approach[J]. J Clim, 2004, 17: 373-393.

[37]    WU FANGHUA, LIU HAILONG, LI JIANGLONG, et al. Effect of adjusting vertical resolution on the eastern equatorial Pacific cold tongue[J]. Acta Oceanologica Sinica, 2005, 24(3): 1-12.

[38]    LIU HAILONG, LIN WUYIN, ZHANG MINGHUA. Heat budget of the upper ocean in the south central Equatorial Pacific[J]. Journal of Climate, 2010, 23 (7): 1779-1792.

[39]    李超. 东半球暖池季节变化与上混合层热收支分析[D]. 广州:中国科学院南海海洋研究所, 2007.


文章导航

/