海洋生物学

硫元素对小球藻异养生产虾青素的影响

展开
  • 1. 中国科学院南海海洋研究所, 广东 广州 510301; 2. 中国科学院研究生院, 北京 100039
刘纪化(1982—), 男, 山东省邹平县人, 硕士, 从事微藻生物技术研究。E-mail: liujihua1982@gmail.com

收稿日期: 2009-04-29

  修回日期: 2009-05-31

  网络出版日期: 2011-03-16

基金资助

广东省科技计划项目(2007B030300004); 广东省海洋与渔业局科技专项项目(A2008009-08)

Effect of sulphur on the growth and production of astaxanthin by Chlorella zofingiensis in heterotrophic culture

Expand
  • 1. South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; 2. Graduate University of CAS, Beijing 100039, China
刘纪化(1982—), 男, 山东省邹平县人, 硕士, 从事微藻生物技术研究。E-mail: liujihua1982@gmail.com

Received date: 2009-04-29

  Revised date: 2009-05-31

  Online published: 2011-03-16

Supported by

广东省科技计划项目(2007B030300004); 广东省海洋与渔业局科技专项项目(A2008009-08)

摘要

研究了不同浓度硫元素对小球藻Chlorella zofingiensis异养生长和合成虾青素的影响。结果表明, 低硫条件下, 细胞分裂受到严重抑制, 虾青素迅速积累且含量显著提高, 但限制藻细胞干重的增加。硫元素3μmol•L?1浓度下, 第14天虾青素含量最大, 达到1.19mg•g?1, 高出300μmol•L?1硫元素组40.68%。硫元素3000μmol•L?1浓度下, 在第14天时获得最大虾青素产量, 达到9.99mg•L?1。与300μmol•L?1硫元素组相比, 3000μmol•L?1硫元素组获得了更高的生物量和虾青素产量。而前者在培养后期, 出现了一定程度的蛋白质抑制现象。本研究认为, 在单批异养培养中, 硫元素300μmol•L?1可能是葡萄糖代谢获得最大生物量所需的最低浓度, 因此在流加葡萄糖培养的工业化生产中, 一次性加入更高浓度的硫元素, 可望获得更高的虾青素产量。

本文引用格式

刘纪化,向文洲,陈涛,左云龙,何慧,苏娇娇,肖伟,刘学东 . 硫元素对小球藻异养生产虾青素的影响[J]. 热带海洋学报, 2011 , 30(1) : 101 -106 . DOI: 10.11978/j.issn.1009-5470.2011.01.101

Abstract

The effect of various sulphur concentrations on the growth of Chlorella zofingiensis and the astaxanthin accumula-tion in its heterotrophic culture were investigated. The results indicated that low sulphur concentration favoured rapid and significant astaxanthin accumulation while the biomass enhancement and cell division were inhibited severely. The addition of 3μmol•L?1 sulphur to the culture led to a maximum astaxanthin content of 1.19mg•g?1, increased by 40.68% compared with the 300μmol•L?1 sulphur cultures. The highest yield of astaxanthin was 9.99mg•L?1, which was obtained in the medium containing 3000μmol•L?1 sulphur on Day 14. The addition of 3000μmol•L?1 sulphur to the culture enhanced the biomass and yield of an-taxanthin compared with the 300μmol•L?1 sulphur cultures in which the protein content decreased in the later stage. To attain the maximum biomass in heterotrophic culture, the 300μmol•L?1 sulphur concentration could be the minimum limit for glucose utilization in batch culture. The results indicated that the productivity of the antaxanthin and biomass could be enhanced by application of higher concentration of sulphur in the industrial production through glucose fed-batch fermentation.

参考文献

[1]       李浩明, 高蓝. 虾青素的结构、功能与应用[J]. 精细化工, 2003, 20(1): 32-37.

[2]       IP P F, WONG K H, CHEN F. Enhancement production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture[J]. Process Biochemistry, 2004, 39(11): 1761-1766.

[3]       HIGUERA-CIAPARA I, FELIX-VALENZUELA L, GOYCOOLEA F M. Astaxanthin: A review of its chemistry and applications[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(12): 185-196.

[4]       LORENZ R T, CYSEWSKI G R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin[J]. Trends Biotechnol, 2000, 18 (4): 160-167.

[5]       IP P F, CHEN F. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark[J]. Process Biochemistry, 2005, 40(2): 733-738.

[6]       孙妮, 向文州, 何慧, . 碳氮比和光强对小球藻合成虾青素的影响[J]. 微生物学通报, 2008, 35(3): 353-357.

[7]       陈涛, 向文州, 何慧, . 不同碳源对小球藻Chlorella zofingiensis 异养生产虾青素的影响[J]. 微生物学通报, 2007, 34(5): 27-30.

[8]       张龙翔, 张庭芳, 李令媛. 生化实验方法和技术[M]. 北京: 高等教育出版社, 1997: 137-140.

[9]       MILLER G LUse of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Anal Chem, 1959, 31(3): 426-428.

[10]    BAROLI I, DO A D, YAMANE T, et al. Zeaxanthin accumulation in the absence of a functional xanthophylls cycle protects Chlamydomonas reinhardtii from photooxidative stress[J]. Plant Cell, 2003, 15 (4): 992-1008.

[11]    RÜDIGER H, THOMAS L. Sulfur metabolism in plants and algae -a case study for an integrative scientific approach[J]. Photosynthesis Research, 2005, 86 (3): 297-298.

[12]    NIKIFOROVA V J, KOPKA J, TOLSTIKOV V, et al. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of arabidopsis plants[J]. Plant Physiology, 2005, 138: 304-318.

[13]    LEWIN R A. Physiology and biochemistry of algae[M]. Academic Press, New York, London, 1962: 619-622.

[14]    周云龙. 植物生物学[M]. 2. 北京: 高等教育出版 , 1999: 160.

[15]    DEL CAMPO J A, RODRIGUEZ H, MORENO J, et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta)[J].Appl Microbiol Biotechnol, 2004, 64(6): 848-854.

[16]    SUN NI, WANG YAN, LI YAN-TAO, et al. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chorella zofingiensis (Chlorophyta)[J]. Process Biochemistry, 2008, 43(11): 1288-1292.

[17]    WEI XIONG, LI XIU-FENG, XIANG JIN-YU, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production[J]. Appl Microbiol Biotechnol, 2008, 78: 29-36.

文章导航

/