收稿日期: 2010-04-12
修回日期: 2010-07-01
网络出版日期: 2011-05-04
基金资助
国家自然科学基金项目(40830852、41025007); 国家重点基础研究发展计划项目(2007CB815905); 海洋公益性行业科研专项(200705026)
Preliminary study of coral bleaching at cellular level under thermal stress
Received date: 2010-04-12
Revised date: 2010-07-01
Online published: 2011-05-04
Supported by
国家自然科学基金项目(40830852、41025007); 国家重点基础研究发展计划项目(2007CB815905); 海洋公益性行业科研专项(200705026)
全球变暖背景下的异常高温能够导致珊瑚及其虫黄藻组成的共生体系崩溃, 虫黄藻大量损失, 出现珊瑚白化, 并可能进一步导致珊瑚礁生态系统退化。文章通过对6种造礁石珊瑚的急性高温胁迫实验, 分析不同种属的石珊瑚虫黄藻共生体系对高温的耐受性差异, 为全球变暖背景下珊瑚群落演替趋势提供理论依据。结果显示: 1)在急性高温胁迫下, 石珊瑚耐受的差异性与其形态有关, 枝状珊瑚耐受性最低, 在高温胁迫下最先白化、死亡, 而叶片状和块状珊瑚对高温的耐受性较强, 这与野外珊瑚礁白化的现场观测结果一致。2)在高温胁迫下, 不同种属珊瑚共生虫黄藻损失的方式不同: 珊瑚持续排出虫黄藻, 如鹿角杯形珊瑚Pocillopora damicornis; 珊瑚先排出一定的共生藻, 之后珊瑚组织携带大量虫黄藻与珊瑚骨骼分离, 如风信子鹿角珊瑚Acropora hyacinthus和松枝鹿角珊瑚Acropora brueggemanni; 先排出部分虫黄藻后, 虫黄藻以有丝分裂增殖的方式迅速补充其数量, 如十字牡丹珊瑚Pavona decussata; 虫黄藻细胞直接坏死而损失虫黄藻, 如澄黄滨珊瑚Porites lutea。研究强调,预测珊瑚对全球变化的响应问题时,应当同时考虑珊瑚宿主和共生藻的作用。
李淑,余克服,陈天然,施祺 . 在细胞水平上对高温珊瑚白化的初步研究[J]. 热带海洋学报, 2011 , 30(2) : 33 -38 . DOI: 10.11978/j.issn.1009-5470.2011.02.033
Global warming and abnormal high temperature cause coral-zooxanthellae symbiosis collapse and significant loss of zooxanthellae (coral bleaching), and further lead to degradation of coral reef ecosystems. In this study, the authors collected six species of corals from the Luhuitou fringing reef in Sanya, and designed a mesocosm experiment that those corals were cultured under a high temperature stress, for investigating the diversity of tolerance among different coral symbiosis at cellular level. The results are as follows. The diversity of tolerance among different coral species under acute thermal stresses was related to their morphologies: branching corals showed the lowest tolerance in thermal stress, while the foliose and massive corals showed stronger tolerance, which was similar to the result in the field monitoring. Different coral species showed different ways of zooxanthellae loss under thermal stresses: zooxanthellae discharging continuously, like Pocillopora damicornis; zooxanthellae discharging partly and followed by coral tissues containing zooxanthellae separating from skeletons, like Acropora hyacinthus and Acropora brueggemanni; the residual zooxanthellae in coral tissues using mitotic proliferation to replenish their numbers quickly, like Pavona decussate; cell necrosis of zooxanthellae in coral tissues, like Porites lutea. This study confirmed that the role of coral host and zooxanthellae should be considered simultaneously in further studies of coral responses to global warming.
Key words: stone coral; coral bleaching; zooxanthellae; thermal stress; host
[1] HOEGH-GULDBERG O. Climate, coral bleaching and the future of the world's coral reefs[J]. Mar Freshwater Res, 1999, 50(8): 839-866.
[2] POCKLEY P. Global warming could kill most coral reefs by 2100[J]. Nature, 1999, 400: 98.
[3] POCKLEY P. Global warming identified as main threat to coral reefs[J]. Nature, 2000, 932.
[4] 李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27(5): 2059-2069.
[5] CARPENTER K E, ABRAR M, AEBY G, et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts[J]. Science, 2008, 321(5888): 560-563.
[6] BUDDEMEIER R W, FAUTIN D G. Coral bleaching as an adaptive mechanism - a testable hypothesis[J]. Bioscience, 1993, 43(5): 320-326.
[7] HOEGH-GULDBERG O, MUMBY P J, HOOTEN A J, et al. Coral reefs under rapid climate change and ocean acidification[J]. Science, 2007, 318(5857): 1737-1742.
[8] SOTKA E E, THACKER R W. Do some corals like it hot?[J]. Trends Ecol Evol, 2005, 20(2): 59-62.
[9] LOYA Y, SAKAI K, YAMAZATO K, et al. Coral bleaching: the winners and the losers[J]. Ecol Lett, 2001, 4(2): 122-131.
[10] BAIRD A H, BHAGOOLI R, RALPH P J, et al. Coral bleaching: the role of the host[J]. Trends Ecol Evol, 2009, 24(1): 16-20.
[11] DOWNS C A, FAUTH J E, HALAS J C, et al. Oxidative stress and seasonal coral bleaching[J]. Free Radical Bio Med, 2002, 33(4): 533-543.
[12] DUNN S R, BYTHELL J C, TISSIER M D A L, et al. Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp.[J]. J Exp Mar Biol Ecol, 2002, 272: 29-53.
[13] DUNN S R, SCHNITZLER C E, Weis V M. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose[J]. P Roy Soc-B Sci, 2007, 274(1629): 3079-3085.
[14] AINSWORTH T D, HOEGH-GULDBERG O. Cellular processes of bleaching in the Mediterranean coral Oculina patagonica[J]. Coral Reefs, 2008, 27(3): 593-597.
[15] FITT W K, BROWN B E, WARNER M E, et al. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals[J]. Coral Reefs, 2001, 20(1): 51-65.
[16] 李淑, 余克服, 施祺, 等. 南海北部珊瑚共生体虫黄藻密度的种间与空间差异及其对珊瑚礁白化的影响[J].科学通报, 2007, 52(22): 2655-2662.
[17] GATES T D, BAGHDASARIAN G, MUSCATINE L. Temperature stress causes host cell detachment in symbiotic Cnidarians: implications for coral bleaching[J]. Biol Bull, 1992, 182(3): 324-332.
[18] MEIKLE P, RICHARDS G N, YELLOWLEES D. Structural investigations on the mucus from six species of coral[J]. Mar Biol, 1988, 99(2): 187-193.
[19] GLYNN P W. Coral reef bleaching: ecological perspectives[J]. Coral Reefs, 1993, 12(1): 1-17.
[20] MARSHALL P A, BAIRD A H. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa[J]. Coral Reefs, 2000, 19(2): 155-163.
[21] EDWARDS A J, CLARK S, ZAHIR H, et al. Coral bleaching and mortality on artificial and natural reefs in Maldives in 1998, sea surface temperature anomalies and initial recovery[J]. Mar Pollut Bull, 2001, 42(1): 7-15.
[22] WADA H. Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress[J]. Proc Natl Acad Sci USA. 1994, 91(10): 4273-4277.
[23] YAMASHIRO H, OKU H, ONAGA K. Effect of bleaching on lipid content and composition of Okinawan corals[J]. Fisheries Sci, 2005, 71(2): 448-453.
[24] JONES R J, YELLOWLEES D. Regulation and control of intracellular algae (zooxanthellae) in hard corals[J]. Phil Trans R Soc Lond B Biol Sci, 1997, 352(1352): 457-468.
[25] TITLYANOV E A, TITLYANOVA T V, LELETKIN V A, et al. Degradation of zooxanthellae and regualation of their density in hermatypic corals[J]. Mar Ecol Prog Ser, 1996, 139: 167-178.
[26] WILKERSON F P, KOBAYASHI D, MUSCATINE L. Mitotic index and size of symbiotic algae in caribbean reef corals[J]. Coral Reefs, 1996, 7(1): 29-36.
[27] DIMOND J, CARRINGTON E. Symbiosis regulation in a facultatively symbiotic temperate coral: zooxanthellae division and expulsion[J]. Coral Reefs, 2008, 27(3): 601-604.
[28] STEEN R G, MUSCATINE L. Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone[J]. Biol Bull, 1987, 172: 146-263.
[29] CERVINO J M, HAYES R L, HONOVICH M, et al. Changes in zooxanthellae density, morphology, and mitotic index in hermatypic corals and anemones exposed to cyanide[J]. Mar Pollut Bull, 2003, 46(5): 573-586.
[30] BAGHDASARIAN G, MUSCATINE L. Preferential expulsion of dividing algal cells as a mechanism for regulating algal-cnidarian symbiosis[J]. Bio Bull, 2000, 199(3): 278-286.
[31] DUNN S R, THOMASON J C, TISSIER D M A, et al. Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration[J]. Cell Death Differ, 2004, 11(11): 1213-1222.
/
〈 | 〉 |