收稿日期: 2010-03-30
修回日期: 2010-07-08
网络出版日期: 2011-05-04
基金资助
国家自然科学基金项目(40830850); 中国科学院知识创新工程重要方向项目(KZCX2-YW-227)
Comparative research of Symbiodinium diversity associated with two color morphs of reef-building coral Galaxea fascicularis
Received date: 2010-03-30
Revised date: 2010-07-08
Online published: 2011-05-04
Supported by
国家自然科学基金项目(40830850); 中国科学院知识创新工程重要方向项目(KZCX2-YW-227)
造礁石珊瑚与共生藻Symbiodinium spp. 的互利共生对维护多样性极为丰富的珊瑚礁生态系统至关重要。 在受到诸如水温异常等环境胁迫时, 宿主珊瑚会排出体内共生藻而导致珊瑚白化直至死亡。造礁石珊瑚群体丰富的颜色对于珊瑚适应环境有着重要的作用, 即使是同种造礁石珊瑚的不同群体,它们在颜色上也会有差异。丛生盔形珊瑚Galaxea fascicularis作为印度-太平洋区系常见种广泛分布于海南三亚珊瑚礁海域, 不同群体的颜色相异。对绿色和褐色2种颜色的丛生盔形珊瑚群体共生藻的28S rDNA进行限制性片段长度多态性(polymerase chain reaction- restriction fragment length polymorphism, PCR-RFLP)分析, 结果显示,该珊瑚可以与C和D系群共生藻分别或同时共生。此外, 丛生盔形珊瑚2种颜色群体的共生藻组成并无显著差异, 表明珊瑚群体的颜色差异与共生藻的组成并无直接联系。影响珊瑚表型颜色的因素复杂,包括珊瑚的绿色荧光蛋白(green ?uorescent protein, GFP)、珊瑚和共生藻的各种色素等, 具体机理需要进一步研究。
周国伟,黄晖,喻子牛,尤丰,李秀保 . 丛生盔形珊瑚的2种颜色群体共生藻组成比较[J]. 热带海洋学报, 2011 , 30(2) : 51 -56 . DOI: 10.11978/j.issn.1009-5470.2011.02.051
The symbiotic association between corals and Symbiodinium is a major contributing factor in the success of coral reef ecosystem with high biodiversity. Under stressful environmental conditions, such as abnormally high water temperatures, this symbiosis can break down and the zooxanthellae are lost in a process known as “bleaching”, which can cause the death of corals if stresses are severe or persistent. Reef-building corals have diverse colors even in different colonies within the same species, and the color plays a key role in acclimation of coral to environment. Galaxea fascicularis is a common reef-building coral in the Indo-Pacific area, including the coral reef areas in Sanya, Hainan Island, and displays a variety colors even with different colonies. The authors used PCR-RFLP to investigate whether or not variation in color is associated with Symbiodin-ium differentiation. The results reveal that G. fascicularis can be associated with Symbiodinium clade C and D either individu-ally or simultaneously. In addition, there is no correlation between the composition of Symbiodinium and the color morphs of the coral G. fascicularis. These results highlight the complexity of coral color such as GFP-like protein of coral and symbiont pigments, and need further research.
Key words: reef building coral; Symbiodinium; color; coral bleaching
[1] FALKOWSKI P G, DUBINSKY Z, MUSCATINE L, et al. Light and the bioenergetics of a symbiotic coral[J]. Bioscience, 1984, 34(11): 705-709.
[2] POCHON X, PAWLOWSKI J. Evolution of the soritids-Symbiodinium symbiosis[J]. Symbiosis, 2006, 42(2): 77-88.
[3] POCHON X, GATES R D. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in
[4] DOVE S G, HOEGH-GULDBERG O, RANGANATHAN S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins[J]. Coral Reefs, 2001, 19(3): 197-204.
[5] DOVE S G, TAKABAYASHI M, HOEGHGULDBERG O. Isolation and partial characterization of the pink and blue pigments of Pocilloporid and Acroporid corals[J]. Biol Bull, 1995, 189(3): 288-297.
[6] GLEASON D F. Differential effects of ultraviolet radiation on green and brown morphs of the
[7] GLEASON D F. Sedimentation and distributions of green and brown morphs of the
[8] TAKABAYASHI M, HOEGHGULDBERG O. Ecological and physiological differences between two color morphs of the coral Pocillopora damicornis[J]. Mar Biol, 1995, 123 (4): 705-714.
[9] BAKER A C. Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium[J]. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 661-689.
[10] DOUGLAS A E. Coral bleaching-how and why?[J]. Mar Pollut Bull, 2003, 46(4): 385-392.
[11] YU J K, LIAO T H., CHEN C A, et al. Do color patterns of Pocillopora damicornis reflect zooxanthellae diversity?[J]. Coral Reefs, 2000, 19(1): 98-99.
[12] FRADE P R., Englebert N, Faria J, et al. Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance?[J]. Coral Reefs, 2008, 27(4): 913-925.
[13] HUANG HUI, DONG ZHIJUN, HUANG LIANGMIN, et al. Restriction fragment length polymorphism analysis of large subunit rDNA of symbiotic dinoflagellates from scleractinian corals in the Zhubi Coral Reef of the
[14] CHEN C A, YANG Y W, WEI N V, et al. Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan[J]. Coral Reefs, 2005, 24(1): 11-22.
[15] THOMPSON J D, HIGGINS D G, GIBSON T J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Res, 1994, 22(22): 4673-4680.
[16] KUMAR S, NEI M, DUDLEY J, et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Brief Bioinform, 2008, 9(4): 299–306.
[17] KLUETER A, LOH W, HOEGH-GULDBERG O, et al. Physiological and genetic properties of two fluorescent colour morphs of the coral Montipora digitata[J]. Symbiosis, 2006, 42(3): 123-134.
[18] MATZ M V, MARSHALLB N J, VOROBYEVB M. Are corals colorful?[J]. Photochem Photobiol, 2006, 82(2): 345-350.
[19] KELMANSON I V, MATZ M V. Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida)[J]. Mol Biol Evol, 2003, 20(7): 1125-1133.
[20] OSWALD F, SCHMITT F, LEUTENEGGER A, et al. Contributions of host and symbiont pigments to the coloration of reef corals[J]. Febs J, 2007, 274(4): 1102-1109.
[21] SALIH A, LARKUM A, COX G, et al. Fluorescent pigments in corals are photoprotective[J]. Nature, 2000, 408(6814): 850-853.
[22] DOVE S. Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching[J]. Mar Ecol Prog Ser, 2004, 272: 99-116.
[23] FIELD S F, BULINA M Y, KELMANSON I V, et al. Adaptive evolution of multicolored fluorescent proteins in reef-building corals[J]. J Mol Evol, 2006, 62(3): 332-339.
[24] UGALDE J A, CHANG B S W, MATZ M V. Evolution of coral pigments recreated[J], Science, 2004, 305(5689): 1433.
[25] LIEN Y T, NAKANO Y, PLATHONG S, et al. Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities[J]. Coral Reefs, 2007, 26(1): 35-44.
[26] TOLLER W W, ROWAN R, KNOWLTON N. Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching[J]. Biol Bull, 2001, 201(3): 360-373.
[27] BAKER A C, STARGER C J, MCCLANAHAN T R, et al. Corals' adaptive response to climate change[J]. Nature, 2004, 430(7001): 741.
[28] TOLLER W W, ROWAN R, KNOWLTON N. Zooxanthellae of the Montastraea annularis species complex: Patterns of distribution of four taxa of Symbiodinium on different reefs and across depths[J]. Biol Bull, 2001, 201(3): 348-359.
[29] LAJEUNESSE T C, BHAGOOLI R., HIDAKA M, et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients[J]. Mar Ecol Prog Ser, 2004, 284: 147-161.
[30] VAN OPPEN M J H, MAHINY A J, DONE T J. Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event[J]. Coral Reefs, 2005, 24(3): 482-487.
/
〈 | 〉 |