收稿日期: 2010-05-17
修回日期: 2010-06-20
网络出版日期: 2011-05-04
基金资助
海洋公益性行业科研专项(200705026);国家自然科学基金项目(40830852、41025007); 国家重点基础研究发展计划项目(2007CB815905)
Experimental study of the impact of heavy metal copper on reef coral growth
Received date: 2010-05-17
Revised date: 2010-06-20
Online published: 2011-05-04
Supported by
海洋公益性行业科研专项(200705026);国家自然科学基金项目(40830852、41025007); 国家重点基础研究发展计划项目(2007CB815905)
分布于热带海洋的珊瑚礁是重要的生态学资源。受全球环境变化和人类活动的影响, 珊瑚礁正处于退化之中, 其中重金属污染是人类活动影响珊瑚礁的重要方面。国际上不少研究初步探索了珊瑚对一定浓度重金属的响应, 我国类似的研究尚不多。本文通过72h的急性毒性测试, 研究重金属Cu2+污染对6科7属石珊瑚的影响, 以了解重金属污染对石珊瑚所造成的伤害和石珊瑚对Cu2+污染的生态反应。实验结果显示, 随着Cu2+浓度的增加, 与珊瑚共生的虫黄藻密度呈现先短暂上升而后持续下降的趋势, 直致珊瑚白化; Cu2+污染对块状滨珊瑚毒性影响最大, 在浓度超过40.7μg•L?1时即致其死亡。Cu2+污染胁迫下所有试验珊瑚的触手伸展活动都出现异常, 显示Cu2+污染对珊瑚生存有明显的影响。
周洁,余克服,李淑,陈天然,赵美霞,施祺 . 重金属铜污染对石珊瑚生长影响的实验研究[J]. 热带海洋学报, 2011 , 30(2) : 57 -66 . DOI: 10.11978/j.issn.1009-5470.2011.02.057
Coral reefs are among the most productive and diverse ecosystem on Earth and provide a multitude of valuable ecosystem services. However, such a valuable ecosystem is in severe decline globally because of climate warming and increase of anthropogenic activities. A few studies have demonstrated that human-induced metal pollution has vital effects on reef cor-als by stressing their symbiotic zooxanthellae growth. For the purpose of understanding the symbiotic zooxanthellae respond-ing to metals, we carried on a 72h-expermental study by exposing reef corals to different levels of copper (Cu) concentrations, observed corals’ responses to Cu pollution, and measured the zooxanthellae densities. The results show that: (1) along with the increase of copper concentration in the seawater, the coral zooxanthellae density increases at first and then continuously de-crease, until bleached; (2) high Cu2+ concentration has severe impact on the survival of reef corals and massive Porites would die shortly after exposing to an extremely high level (40.7?g•L?1) of Cu2+; and (3) the Cu2+ injured corals stimulated slime secretion at first, and then their tentacle lost activity and appeared bleaching. This study suggests copper pollution has sig-nificant impact on the survival of reef corals.
Key words: reef coral; copper pollution; acute toxicity; density of zooxanthellae
[1] 余克服. 雷州半岛珊瑚礁的生态特征与资源可持续利用[J]. 生态学报, 2005, 25 (4): 669-675.
[2] 李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27 (5): 2059-2069.
[3] ENDEAN R, CAMERON A M. Trends and new perspectives in coral reef ecology [M]// DUBINSKY Z. Coral Reefs, Ecosystems of the World 25.
[4] IUCN. IUCN Red List Categories and Criteria: Version 3.1[R]. IUCN,
[5] COSTA Jr O S, LEAO Z, NIMMO M, et al. Nutrification impacts on coral reefs from northern Bahia, Brazil [J]. Hydrobiologia, 2000, 440: 307-315.
[6] HOWARD L S, CROSBY D G, ALINO P. Evaluation of some methods for quantitatively assessing the toxicity of heavy metals to corals[R]// JOKIEL P L, RICHMOND R H, ROGERS R A. Coral Reef Population Biology. Hawaii: Hawaii Institute of Marine Biology Technical Report no. 37, 1986:452-464.
[7] BUDDERMEIER R W, SCHNEIDER R C, SMITH S V. The alkaline earth chemistry of corals [C]// GOMEZ E D, BIRKELAND C E, BUDDERMEIER R W, et al. Proceedings of the 4th International Coral Reef Symposium: Vol. 2. Manila: University of the Philippines, 1981: 81- 85.
[8] 李淑, 余克服, 施褀, 等. 海南岛鹿回头石珊瑚对高温响应行为的实验研究[J]. 热带地理, 2008, 28 (6): 534-539.
[9] 李淑, 余克服, 施褀, 等. 造礁石珊瑚对低温的耐受能力及响应模式[J]. 应用生态学报, 2009, 20(9): 2289-2295.
[10] 黄玲英, 余克服, 施褀, 等. 锌胁迫下2种鹿角珊瑚虫黄藻荧光值的变化[J]. 热带地理, 2010, 30(4): 357-362..
[11] 时翔, 谭烨辉, 黄良民, 等. 磷酸盐胁迫对造礁石珊瑚共生虫黄藻光合作用的影响[J]. 生态学报, 2008, 28(6): 2581-2586.
[12] 赵美霞, 余克服, 张乔民, 等. 近
[13] 赵美霞, 余克服, 张乔民, 等. 近50年来三亚鹿回头岸礁活珊瑚覆盖率的动态变化[J]. 海洋与湖沼, 2010, 41(3): 440-447.
[14] 黄良民. 三亚湾生态环境与生物资源[M]. 北京: 科学出版社, 2007: 60-62.
[15] 李淑, 余克服, 施祺, 等. 南海北部珊瑚共生虫黄藻密度的种间与空间差异及其对珊瑚礁白化的影响[J]. 科学通报, 2007, 52 (22): 2655-2662.
[16] FAGOONEE I, WILSON H B, HASSELL M P, et al. The dynamics of zooxanthellae populations: A long-term study in the field [J]. Science, 1999, 283: 843-845.
[17] GB 17378.4—1998. 海洋监测规范第4部分: 海水分析[S].
[18] HARLAND A D, BROWN B E. Metal tolerance in the scleractinian coral Porites lutea [J]. Marine Pollution Bulletin, 1989, 20 (7): 353-357.
[19] JONES R J. Zooxanthellae loss as a bioassay for assessing stress in corals [J]. Marine Ecology Progress Series, 1997, 149: 163-171.
[20] 况琪军, 夏宜琤, 惠阳. 重金属对藻类的致毒效应[J]. 水生生物学报, 1996, 20(3): 277-283.
[21] GOH B P L, CHOU L M. Effects of the heavy metals copper and zinc on zooxanthellae cells in culture [J]. Environmental Monitoring and Assessment, 1997, 44: 11-19.
[22] HOEGH-GULDBERG O. Climate change, coral bleaching and the future of the world’s coral reefs [J]. Marine Freshwater Research, 1999, 50: 839-866.
[23] TRENCH R K. The cell biology of plant-animal symbioses [J]. Annual Review of Plant Physiology, 1979, 30: 485-531.
[24] ROWAN R, POWERS D. Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae) [J]. Marine Ecology Progress Series, 1991, 71: 6-73.
[25] LOH W, CARTER D A, HOEGH-GULDBERG O. Diversity of zooxanthellae from scleractinian corals of One Tree Island (Great Barrier Reef) [C]// GREENWOOD J G, HALL N J. Proceedings of the Australian Coral Reef Society 75th Anniversary Conference. Brisbane: the University of Queensland, 1998:87-95.
[26] ROWAN R, KNOWLTON N, BAKER A, et al. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching [J]. Nature, 1997, 388: 265-269.
[27] LOH WILLIAM K W, LOI TOHA, CARTER DEE, et al. Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species, Seriatopora hystrix and Acropora longicyathus, in the Indo-West Pacific [J]. Marine Ecology Progress Series, 2001, 222: 97-107.
[28] CHEN C A, YANG Y-W, WEI N V, et al. Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan [J]. Coral Reefs, 2005, 24: 11-22.
[29] BRYAN G W. The effects of heavy metals on marine and estuarine animals [J]. Proceedings of the Royal Society of London B, 1971, 177: 389-410.
[30] 江章, 丁云源. 重金属对砂虾初期幼虫之急性毒性试验[J]. 台湾水产试验所试验报告, 1984, (36): 93-98.
[31] 黄连泰. 一些重金属对七星鲈及美洲鲈之急性毒性试验[J]. 台湾水产试验所试验报告, 1988, (44): 115-118.
[32] LIVINGSTON H D, THOMPSON G. Trace element concentrations in some modern corals [J]. Limnology and Oceanography, 1971, 16: 786-796.
[33] GOH B. Mortality and settlement success of Pocillopora damicornis planula larvae during recovery from low levels of nickel [J]. Pacific Science, 1991, 45: 276-286.
[34] REICHELT-BRUSHETT A J, HARRISON P L. The effect of copper, zinc and cadmium on fertilization success of gametes from scleractinian reef corals [J]. Marine Pollution Bulletin, 1999, 38(3): 182-187.
[35] HEYWARD A J. Inhibitory effects of copper and zinc sulphates on fertilization in corals [C]// CHOAT J H, BARNES D, BOROWITZKA MA, et al. Proceedings of the 6th International Coral Reef Symposium: Vol. 2: Contributed Papers. Townsville, 1988:299-303.
[36] BENNET C. Copper decimates coral reef spawning [J]. New Scientist, 2003, 10(1): 21.
[37] MITCHELMORE C L, VERDE E A, WEIS V M. Uptake and partitioning of copper and cadmium in the coral Pocillopora damicornis [J]. Aquatic Toxicology, 2007, 85(1): 48-56.
[38] DEPLEDGE M H, RAINBOW P S. Models of regulation and accumulation of trace metals in marine invertebrates [J]. Comparative Biochemistry and Physiology, 1990, 97: 1-7.
[39] HAY R W. Bio-inorganic Chemistry [M]. Chichester: Ellis Horwood, 1984.
[40] CLAISSEV D, ALZIEU C. Copper contamination as a result of antifouling paint regulation [J]. Marine Pollution Bulletin, 1993, 26: 395-397.
[41] SELINGER B. Chemistry in the Market Place [M]. Australia: Harcourt Brace Jovanovich Group, 1989.
[42] SADIQ M. Toxic Metal Chemistry in Marine Environments [M]. New York: Marcel Dekker, 1992. 390.
[43] Australian and New Zealand Environment and Conservation Council. Australian Water Quality Guidelines for Fresh and Marine Waters [S]. 1992.
[44] 国家环境保护局, 国家技术监督局. GB 3097—1997 海水水质标准 [S]. 1997: 1-55.
[45] DUBINSKY Z. Ecosystems of the World: Coral Reefs [M]. Amsterdam: Elsevier, 1990:75-87.
[46] 朱葆华, 王广策, 黄勃, 等. 温度、缺氧、氨氮和硝氮对3种珊瑚白化的影响[J]. 科学通报, 2004, 49(17): 1743-1748.
[47] WARNER M E, FITT W K, SCHMIDT G W. Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96 (14): 8007-8012.
[48] BANASZAK A T, ROWAN M P, KUFFNER I B, et al. Relationship between ultraviolet (UV) radiation and mycosporine-like amino acids (MAAs) in marine organisms [J]. Bulletin of Marine Science, 1998, 63: 617-628.
[49] LESSER M P, STOCHAJ W R, TAPLEY D W, et al. Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen [J]. Coral Reefs, 1990, 8(4): 225-232.
[50] SALIH A, LARKUM A, COX G, et al. Fluorescent pigments in corals are photoprotective [J]. Nature, 2000, 408: 850-853.
[51] MITCHELL R, CHET I. Bacterial attack of corals in polluted seawater [J]. Microbial Ecology, 1975, 2: 227-233.
[52] BAK R P M, ELGERSHUIZEN J H B. Patterns of oil sediment rejection in corals[J]. Marine Biology, 1976, 37: 715-730.
[53] RIEGL B, BRANCH G M. Effects of sediment on the energy budgets of four scleractinian (Bourne 1900) and five alcyonacean (Lamouroux 1816) corals [J]. Journal of Experimental Marine Biology and Ecology, 1995, 186: 259-275.
[54] EVANS P W. Microcosm responses to environmental perturbants [J]. Helgolaender Wiss Meeresunters, 1977, 30: 178-191.
/
〈 | 〉 |