海洋化学

珠江口水域浮游生态系统中磷的循环及其效应评估

  • 刘胜 ,
  • 李涛 ,
  • 王桂芬 ,
  • 曹文熙 ,
  • 宋星宇 ,
  • 张建林 ,
  • 尹建强 ,
  • 黄良民
展开
  • 1. 中国科学院南海海洋研究所海洋生物资源可持续利用重点实验室, 广东 广州 510301; 2. 中国科学院海南热带海洋生物实验站, 海南 三亚 572000; 3. 中国科学院南海海洋研究所热带海洋环境动力学重点实验室, 广东 广州 510301
刘胜(1970—), 男, 四川省岳池县人, 博士, 副研究员, 主要从事浮游生物生理生态学研究。

收稿日期: 2008-11-02

  修回日期: 2009-02-12

  网络出版日期: 2001-01-08

基金资助

中科院创新项目(KZCX2-YW-JS206, KZCX2-YW-215); 中科院–国家外专局创新团队国际合作伙伴计划项目(KZCX2-YW- T001); 国家自然科学基金(40206016, U0633007); 中国科学院野外台站基金。

Evaluation of cycle and effect of phosphorus in plankton ecosystem in the waters
of the Pearl River Estuary

  • LIU Sheng ,
  • LI Tao ,
  • WANG Gui-fen ,
  • CAO Wen-xi ,
  • SONG Xing-yu ,
  • ZHANG Jian-lin ,
  • YIN Jian-qiang ,
  • HUANG Liang-min
Expand
  • 1.Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China; 2. Tropical Marine Biological Research Station in Hainan, CAS, Sanya 572000, China; 3. Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China

Received date: 2008-11-02

  Revised date: 2009-02-12

  Online published: 2001-01-08

摘要

根据现场调查和室内试验工作, 计算珠江口水域浮游植物有效光合作用水体体积, 同时研究浮游动物摄食行为对磷再生的补偿作用, 进而对该水域磷的生物利用状况进行初步评估。分析珠江口2002—2003年的数据发现, 珠江口水域浮游植物有效进行光合作用水体的体积存在季节性变化, 枯水期约为9.7×104m3, 而丰水期约为6.6×104m3。该水域总初级生产量在枯水期约为36kg.d-1, 在丰水期约为31kg.d-1, 呈现枯水期大于丰水期的特点。浮游动物的摄食作用可促进水体中磷的再生, 这部分磷可满足浮游植物生长对磷需求的1.5%—15.6%, 并呈现丰水期大于枯水期的特点。浮游动物摄食作用直接释放的量远大于其自身生理周转释放的量。

本文引用格式

刘胜 , 李涛 , 王桂芬 , 曹文熙 , 宋星宇 , 张建林 , 尹建强 , 黄良民 . 珠江口水域浮游生态系统中磷的循环及其效应评估[J]. 热带海洋学报, 2010 , 29(1) : 42 -45 . DOI: 10.11978/j.issn.1009-5470.2010.01.042

Abstract

Available water volume for phytoplankton photosynthesis, effect of zooplankton grazing on the regeneration of phosphorus and bio-utilization of phosphorus in the waters of the Pearl River Estuary were studied by both field and laboratory experiments. Analysis of the data between 2002 and 2003 indicated that the available water volume for phytoplankton photo-synthesis changed seasonally, with about 9.7×104m3 in dry season and 6.6×104m3 in wet season. The same trend was also found in primary productivity, with approximate 36kg.d-1 in dry season and 31kg.d-1 in wet season, respectively. Phosphorus regen-eration could be accelerated by zooplankton grazing and could meet 1.5%-15.6% of phosphorus required by phytoplankton growth seasonally. Amount of phosphorus that directly released from zooplankton grazing was much higher than that from zooplankton biological turnover.

参考文献

[1] 黄自强, 暨卫东. 长江口水中总磷、有机磷、磷酸盐的变化特征及相互关系[J]. 海洋学报, 1994, 16(1): 51-60.
[2] 陆健建. 河口生态学[M]. 北京: 海洋出版社, 2003: 128-132.
[3] 潘建明, 扈传昱, 陈建芳, 等. 南海海域海水中各形态磷的化学分布特征[J]. 海洋学报, 2004, 26(1): 40-47.
[4] YIN K, QIAN P Y, CHEN J C, et al. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation[J]. Mar Ecol Prog Ser, 2000, 194: 295-305.
[5] HUANG X P, HUANG L M, YUE W Z. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China[J]. Mar Pollut Bull, 2003, 47: 30-36.
[6] 林祖亨, 梁舜华. 珠江口水域的潮流分析[J]. 海洋通报, 1996, 15(2): 11-22.
[7] KIRK J T O. Light and photosynthesis in aquatic ecosystems: 2nd ed [M]. Cambridge University Press, 1994.
[8] CERVANTES-DUARTE R, MUELLER J L, TREES C C, et al. Euphotic depth, irradiance attenuation and remote sensing K490 in bio-optical provinces of the Gulf of California[J]. Ciencias Marinas, 2000, 26 (4): 533-560.
[9] 欧素英. 珠江口冲淡水扩展变化及其动力机制研究[D]. 广州: 中国科学院南海海洋所, 2005.
[10] TAN Y H, HUANG L M, CHEN Q C, et al. Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River Estuary, China[J]. Cont Shelf Res, 2004, 24(16): 1949-1968.
[11] LIU S, WANG W X, HUANG L M. Phosphorus dietary assimilation and efflux in the marine copepod Acartia erythraea[J]. Mar Ecol Prog Ser, 2006, 321: 193-202.
[12] 严宏谟主编. 海洋大辞典[M]. 沈阳: 辽宁人民出版社, 1998: 170.
[13] SOROKIN Y I. Dynamics of inorganic phosphorus in pelagic communities of the Sea of Okhotsk[J]. J Plankton Res, 2002, 24(12): 1253-1263.
[14] PERRY M J, EPPLEY R W. Phosphate uptake by phytoplankton in the central North Pacific Ocean[J]. Deep Sea Research Part A, 1981, 28(1): 39-49.
[15] BULTER E I, CORNER E D, MARSHALL S M. On the nutrition and metabolism of zooplankton. VI. Feeding efficiency of Calanus in terms of nitrogen and phosphorus[J]. J Mar Biol Assoc UK, 1969, 49: 977-1003.
[16] POMEROY L R, MATHEWS H M, MIN H S. Excretion of phosphate and soluble organic phosphorus compounds by zooplankton[J]. Limnol Oceanogr, 1963, 8(1): 50-55.
[17] JAMES M R, SALONEN K. Zooplankton-phytoplankton interactions and their importance in the phosphorus cycle of a polyhumic lake[J]. Arch Hydrobiol, 1991, 123: 37-51.
[18] ZHANG, Y, ZHU L, ZENG X, et al. The biogeochemical cycling of phosphorus in the upper ocean of the East China Sea[J]. Estuarine Coastal Shelf Science, 2004, 60(3): 369-379.
[19] HARGRAVE B T, GEED G H. Phosphorus excretion by zooplankton[J]. Limnol Oceanogr, 1968, 13(2): 332-342.

文章导航

/