海洋水文学

珠江河口的能量传播和能量耗散

展开
  • 1. 中山大学近岸海洋科学与技术研究中心, 广东 广州 510275; 2. 中山大学环境科学与工程学院, 广东 广州 510275; 3. 中山大学工学院力学系, 广东 广州 510275
刘欢(1980—), 男, 广东省韶关市人, 博士, 从事河口动力学研究。E-mail: liuhuan_80@hotmail.com

收稿日期: 2010-10-19

  修回日期: 2010-10-24

  网络出版日期: 2011-07-20

基金资助

国家自然科学基金项目(41006050、40676056、10772204); 中国博士后科学基金项目(20090460799)

Energy flux and dissipation in the Pearl River Estuary

Expand
  • 1. Research Center of Coastal Ocean Science and Technology, Sun Yat-sen University, Guangzhou 510275, China; 2. School of Envi- ronmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; 3. Department of Applied Mechanics and Engineering, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2010-10-19

  Revised date: 2010-10-24

  Online published: 2011-07-20

摘要

建立了包括河网区、河口湾区和近海水域的 ECOMSED-3D 数学模型, 计算了珠江河口的能量传播和能量耗散特征。研究表明: 1)珠江河口能量来源受潮汐和径流共同作用, 季节性变化明显; 2)珠江河口存在若干高能耗区, 其单位面积能耗率比上下游河段平均能耗率高 1—2 个量级, 它们和一定的动力结构与地貌单元相联系。根据地貌特征和消能特点, 可以划分为以下 3 种类型:“门”的高能耗区、曲折河段高能耗区和分汊汇流高能耗区。

本文引用格式

刘欢 ,吴超羽 ,包芸 . 珠江河口的能量传播和能量耗散[J]. 热带海洋学报, 2011 , 30(3) : 16 -23 . DOI: 10.11978/j.issn.1009-5470.2011.03.016

Abstract

A three-dimensional numerical model that covers the river network, estuary and coastal region is developed to study the energy flux and characteristic of energy dissipation. The results are as follows. (1) The energy source in the Pearl River Estuary (PRE) is mainly from tides and freshwater, which have obvious seasonal variation. (2) There are typical hotspots where energy dissipation is higher by 1?2 orders than those in the immediate upstream and downstream sections in the PRE. This phenomenon is linked with flow dynamic structure and morphological unit. Based on the characteristic of morphology and dissipation, the hotspots can be categorized into three types: “gate” of the PRE, meandering river, and branch and junction.

参考文献

[1] 吴超羽, 任杰, 包芸, 等.珠江河口“门”的地貌动力学初探[J].地理学报, 2006, 61(5): 537-548.
[2] TAYLOR G I.Tidal friction in the Irish Sea[J].Philosophical Transactions of the Royal Society of London, 1919, A230: 1-93.
[3] JEFFERYS H. Tidal friction in shallow seas[J]. Philosophical Transactions of the Royal Society of London, 1920, A221: 239-264.
[4] BARTHEL K, GADE H G, SANDAL C K.A mechanical energy budget for the North Sea[J].Continental Shelf Research, 2004, 24(2):167-181.
[5] ZHONG L J, LI M.Tidal energy fluxes and dissipation in the Chesapeake Bay[J].Continental Shelf Research, 2006, 26(6): 752-770.
[6] MACCREADY P, BANAS N S, HICKEY B M, et al. A model study of tide- and wind-induced mixing in the Columbia River Estuary and plume[J]. Continental Shelf Research, 2009, 29(1): 278-291.
[7] 方国洪, 曹德明, 黄企洲.南海潮汐潮流的数值模拟[J].海洋学报, 1994, 16(4): 1-12.
[8] 赵保仁, 方国洪, 曹德明.渤、黄、东海潮汐潮流的数值模拟[J].海洋学报, 1994, 16(5): 1-10.
[9] 李培良, 李磊, 左成军, 等.渤黄东海能量通量和能量耗散[J].中国海洋大学学报, 2005, 35(5): 713-718.
[10] GALPERIN B L, KANTHA H, HASSID S, et al. A quasi-equilibrium, turbulent energy model for geophysical flows[J]. Journal of the Atmospheric Sciences, 1988, 45: 55-62.
[11] SMAGORINSKY J.General circulation experiments with the primitive equation[J].Monthly Weather Review, 1963, 91: 99-164.
[12] JOSEPH H, RICARDO D C.Numerical simulation of the tidal propagation in the coastal region of Santos(Brazil, 24ºS 46ºW)[J]. Continental Shelf Research, 2003, 23: 1597-1613.
[13] 钱宁, 张仁, 周仁德.河床演变学[M]. 北京: 科学出版社, 1987: 584.
[14] 刘欢, 吴超羽, 包芸.等. 一次东北季风过程下珠江口磨刀门河口环流研究[J]. 海洋工程, 2008, 26(2): 102-111.

文章导航

/