海洋气象学

1982—1999 年珠江流域归一化植被指数与降水年际变化分析

展开
  • 1.  中国科学院烟台海岸带研究所,  山东  烟台 264003; 2.  热带海洋环境国家重点实验室(中国科学院南海海洋研究所),  广东
    广州 510301; 3.  中国科学院研究生院,  北京 100049; 4.  国家海洋局南海海洋工程勘察与环境研究院,  广东  广州 510310
王银霞(1981—), 女, 山东省菏泽市人, 硕士, 主要从事海岸带环境和气候研究。E-mail: yinxia19841227@yahoo.cn

收稿日期: 2010-04-10

  修回日期: 2010-05-17

  网络出版日期: 2011-09-08

基金资助

中国科学院近海海洋观测研究网络-西沙海洋观测研究站建设项目(KZCX2-YW-Y202);  国家自然科学基金委-广东联合基
金重点项目(U0733002);  国家杰出青年基金项目(40625017);  国家重点基础研究发展计划项目(2011CB403504);  中国科学院
知识创新工程重要方向项目(KZCX2-EW-QN203)

Interannual variation of vegetation and precipitation in Pearl River Basin during 1982−1999

Expand
  • 1. Yantai Institute of Coastal Zone Research, CAS, Yantai  264003,  China; 2.  State Key Laboratory of Tropical  Oceanography
    (South China Sea Institute of Oceanology, CAS), Guangzhou 510301, China; 3. Graduate University of CAS, Beijing 100049, China;
    4. South China Sea Marine Engineering and Environment Institute of State Oceanic Administration, Guangzhou, Guangzhou, 510300,
    China  

Received date: 2010-04-10

  Revised date: 2010-05-17

  Online published: 2011-09-08

摘要

利用 1982—1999 年月平均归一化植被指数(normalized difference vegetation index, NDVI)和降水资料,  采用
经验正交函数(EOF)方法分别研究了珠江流域的NDVI和降水在年和年际尺度上的异常关系,  并分析了NDVI与降
水及其他一些气象因子的相关关系。研究发现流域 NDVI 和降水在年内异常上具有较好的空间一致性,  在时间上
具有 1—2 个月的滞后;  年际尺度上两者异常空间差异明显,  流域东部(下游)异常为负相关,  西部(上游)异常为正
相关。 NDVI 和各气候因子的相关关系存在明显的空间和季节差异:  流域东部 NDVI 和降水负相关明显,  和温度及
太阳短波辐射正相关明显;  流域西部 NDVI 和降水滞后正相关明显,  和温度相关不明显; NDVI 在夏季和降水呈显
著负相关,  在春、秋季节滞后于降水,  呈明显正相关,  且滞后 3 个月正相关最为明显。

本文引用格式

王银霞 ,施平 ,曾丽丽 ,谢强 ,王东晓 . 1982—1999 年珠江流域归一化植被指数与降水年际变化分析[J]. 热带海洋学报, 2011 , 30(4) : 44 -50 . DOI: 10.11978/j.issn.1009-5470.2011.04.044

Abstract

Based on the monthly normalized difference vegetation index (NDVI) and precipitation data in the Pearl River Ba-
sin from 1982 to 1999, the relationship between NDVI and precipitation anomaly on the annual and interannual time scales are
analyzed using empirical orthogonal function (EOF) method. Correlation coefficients between NDVI, precipitation, and other
climatic factors are also analyzed. There is a good spatial coincidence between the variation of NDVI and that of precipitation
anomaly in terms of annual variability, with NDVI lags one month. The interannual anomalies of NDVI and precipitation have
obvious difference in their spatial distributions. Positive correlation is found in the west of the Pearl River Basin, while nega-
tive correlation is found in the east. The relationships between NDVI and climate factors are different in different seasons and
different domains. The correlation coefficient between NDVI and precipitation is negative in the east and positive in the west.
The relationship between NDVI and temperature is positive in the east and not significant in the west; same for the relation-
ship between NDVI and solar radiation. In summer, the NDVI and precipitation have negative relationship, which reverses in
spring and fall.

参考文献

[1] LAMBIN E F, STRAHLER A H. Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales[J]. International Journal of Remote Sensing, 1994. 15: 2099-2119.
[2] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003: 374-394.
[3] SCHULTZ P A, HALPERT M S. Global analysis of the relationships among a vegetation index, precipitation and land surface temperature[J]. International Journal of Remote Sensing, 1995, 16: 2755-2777.       
[4] WANG J, RICH P M, PRICE K P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA[J]. International Journal of Remote Sensing, 2003, 24(11): 2345–2364.      
[5] 陈云浩, 李晓兵, 史培军. 1983—1992年中国陆地NDVI变化的气候因子驱动分析[J]. 植物生态学报, 2001, 25(6): 716-720.
[6] LI B, TAO S, DAWSON R W. Relations between AVHRR NDVI and ecoclimatic parameters in China[J]. Remote Sensing, 2002, 23(5): 989-999.
[7] 王兆礼, 陈晓宏. 珠江流域植被净初级生产力及其时空格局[J]. 中山大学学报: 自然科学版, 2006, 45(6): 106-110.
[8] BELLONE T, BOCCARDO P, PEREZ F. Investigation of vegetation dynamics using long-term normalized difference vegetation index time-Series[J]. American Journal of Enviro-nmental Science, 2009, 5(4): 460-466.
[9] TAMAVSKY E, GARRIGUES S, BROWN M E. Multiscale geostatistical analysis of AVHRR , SPOT- VGT and MODIS global NDVI products[J]. Remote Sensing Environment, 2008, 112: 535-549.
[10] DAVENPORT M L, NICHOLSON S E. On the relation between rainfall and the normalized difference vegetation index for diverse vegetation types in east Africa[J]. International Journal of Remote Sensing, 1993, 14(12): 2369-2389.
[11] ZHOU L, TUCKER C J, KAUFMANN R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of Geophysical Research, 2001, 106 (D17): 20069-20083.
[12] WILLMOTT C J, ROBESON S M. Climatologically aided interpolation (CAI) of terrestrial air temperature[J]. International Journal of Climatology, 1995,15(2): 221-229.
[13] SOON-LL AN. Conditional maximum covariance analysis and its application to the tropical Indian Ocean SST and surface wind stress anomalies[J]. Journal of Climate, 2003, 27(16): 2932-2938.

文章导航

/