利用基于三维斜压非线性的普林斯顿海洋模型(POM)及其切向线性伴随模式的四维变分数据同化(4DVAR)系统对一个近岸风暴潮个例进行理想同化试验和模拟, 着重分析了四维变分数据同化增水改善中的二维平流作用。试验结果表明, 同化后的水位结果明显优于同化前的结果, 而且同化对预报的影响主要在前5h, 尤其是积分到3—4h时同化和无同化的结果差异最大, 在5h后同化的影响变得非常小。从平流作用中分析得知, 无论是只同化水位还是同化水位和海表流速, 同化的结果都增大了沿岸和向岸的平流。与无同化结果相比, 同化试验的增水改善主要是来自向岸平流的增大, 但只同化水位时由于水位增大使向岸压力梯度减小从而阻碍了向岸流的进一步增大; 而同时同化水位和海表流速时, 由于流速也被改善, 故增水改善更明显和合理。
[1] BENNETT A F. Monographs Inverse Methods in Physical Oceaography[M]//Cambridgeon Mechanics and Applied Mathematics. Cambridge: Cambridge University Press, 1992: 346.
[2] GHIL M, MALANOTTE-RIZZOLI P, Data Assimilation in Meteorology and Oceanography[J]. Adv Geophys, 1991, 33: 141-266.
[3] BOUTTIER F, COURTIER P. Data assimilation concepts and methods[M]// ECMWF. Meteorological Training Course Lecture Series. 1999: 1-75.
[4] THEPAUT J N, HOFFMAN R N, COURTIER P. Interactions of dynamics and observations in a 4-dimensional variational assimilation[J]. Mon Weather Rev, 1993, 119: 3393-3414.
[5] ZUPANSKI M. Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment[J]. Mon Weather Rev, 1993, 121: 2396-2408.
[6] ZUPANSKI D, MESINGER F. Four-dimensional variational data assimilation of precipiation data[J]. Mon Weather Review, 1995. 123: p. 1112-1127.
[7] ZUPANSKI D. A general weak constraint applicable to operational 4DVAR data assimilation systems[J]. Mon Weather Rev, 1997, 125: 2274-2292.
[8] SASAKI Y. Some basic formalisms in numerical variational analysis[J]. Mon Weather Rev, 1970, 98: 875–883.
[9] LEDIMET F X, TALAGRAND O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[J]. Tellus, 1986, 38A: 97–110.
[10] DERBER J C. Variational four-dimensional analysis using quasi-geostrophic constraints[J]. Mon Weather Rev, 1987, 115: 998–1008.
[11] TALAGRAND O, COURTIER P. Variational assimilation of meteorological observations with the adjoint vorticity equation. Part I: Theory[J]. Quart J Roy Meteor Soc, 1987, 113: 1311-1328.
[12] COURTIER P, TALAGRAND O. Variational assimilation of meteorological observations with the direct and adjoint shallow-water equation[J]. Tellus, 1992, 42A: 531–549.
[13] THEPAUT J N, COURTIER P. Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model[J]. Quart J Roy Meteor Soc, 1991, 117, 1225-1254.
[14] NAVON I M, ZOU X, DERBER J, SELA J. Variational data assimilation with an adiabatic version of the NMC spectral model[J]. Mon Weather Rev, 1992, 120: 1433-1446.
[15] RABIER F, COURTIER P. Four-dimensional assimilation in the presence of baroclinic instability[J]. Quart J Roy Meteor Soc. 1992, 118: 649–672.
[16] ZOU X, NAVON I M, SELA J. Control of gravitational oscillations in variational data assimilation[J]. Mon Weather Rev, 1993, 121: 272–289.
[17] ANDERSSON E, PAILEUX J, THE′PAUT J N, et al. Use of cloud-cleared radiances in three/four-dimensional variational data assimilation[J]. Quart J Roy Meteor Soc, 1994, 120: 627–653.
[18] COURTIER P, THE′PAUT J N, HOLLINGSWORTH A. A strategy for operational implementation of 4D-Var, using an incremental approach[J]. Quart J Roy Meteor Soc, 1994, 120: 1367-1388.
[19] ZOU X L, XIAO Q N. Studies on the initialization and simulation of a mature Hurricane using a variational bogus data assimilation scheme[J]. J Atoms Sci, 2000, 57(6): 836-860.
[20] PENG S Q, ZOU X. Assimilation of NCEP multi-sensor hourly rainfall data using 4D-Var approach: a case study of the squall line on 5 April 1999[J]. Meteor Atmos Phys, 2002, 81: 237–255.
[21] PENG S Q, ZOU X. Assimilation of ground-based GPS zenith total delay and rain gauge precipitation observations using 4D-Var and their impact on short-range QPF[J]. J Meteor Soc Jpn, 2004, 82: 491–506.
[22] BENNETT A F, MCINTOSH P C. Open ocean modeling as an inverse problem: tidal theory[J]. J Phys Oceanogr, 1982, 12: 1004-1018.
[23] YU L, O’BRIEN J J. Variational estimation of the wind stress drag coefficient and the oceanic eddy viscosity profile[J]. J Phys Oceanogr, 1991, 21: 709–719.
[24] DAS S K, LARDNER R W. On the estimation of parameters of hydraulic models by assimilation of periodic tidal data[J]. J Geophys Res, 1991, 96 (C8): 15187–15196.
[25] SEILER U. Estimation of open boundary conditions with the adjoint method[J]. J Geophys Res, 1993, 98: 22855-22870.
[26] LU J, HSIIEH W E. Adjoint data assimilation in coupled atmosphere–ocean models: determining initial model parameters in a simple equatorial model[J]. Quart J Roy Meteor Soc, 1997, 123: 2115-2139.
[27] LU J, HSIEH W E. Adjoint data assimilation in coupled atmosphere–ocean models: determining initial conditions in a simple equatorial model[J]. J Meteor Soc Jpn, 1998a, 76: 737-748.
[28] LU J, HSIEH W E. On determining initial conditions and parameters in a simple couples atmosphere–ocean model by adjoint data assimilation[J]. Tellus, 1998b, 50A: 534-544.
[29] HEEMINK A W, MOUTHAAN E A, ROEST M R T, et al. Inverse 3D shallow water flow modeling of the continental shelf[J]. Continental Shelf Res, 2002, 22: 465-484.
[30] ZHANG A, PARKER B B, WEI E. Assimilation of water level data into a coastal hydrodynamic model by an adjoint optimal technique[J]. Continental Shelf Res, 2002, 22: 1909-1934.
[31] ZHANG A J, WEI E, PARKER B B. Optimal estimation of tidal open boundary conditions using predicted tides and adjoint data assimilation technique[J]. Continental Shelf Res, 2003, 23: 1055-1070.
[32] 吕咸青, 田纪伟, 吴自库. 渤、黄海的底摩擦系数 [J]. 力学学报, 2003, 35(4): 465-468 .
[33] LIONELLO P, SANNA A, ELVINI E, et al. A data assimilation procedure for operational prediction of storm surge in the northern Adriatic Sea[J]. Continental Shelf Research, . 2006, 26: 539-553.
[34] MADSEN H, JAKOBSEN F. Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal [J]. Coastal Engineering, 2004, 51: 277-296.
[35] PENG S Q, XIE L. Effect of determining initial conditions by four-dimensional variational data assimilation on storm surge forecasting[J]. Ocean Modelling, 2006, 14: 1-18.
[36] BLUMBERG A F, MELLOR G L. A description of a three- dimensional coastal ocean circulation model[C]//HEAPS N S. Three Dimensional Coastal Ocean Models. Washington, DC: American Geophysical Union, 1987: 1-16.
[37] Mellor G. L. Users guide for a three-dimensional, primitive equation, numerical ocean model (June 2003 version)[C]// Prog in Atmos. and Ocean Sci. Princeton University, 2003: 1-53.
[38] XIE L, PIETRAFESA L J, PENG M. Incorporation of a mass-conserving inundation scheme into a three- dimensional storm surge model[J]. J Coastal Res, 2004, 20: 1209-1223.
[39] PENG M, XIE L, PIETRAFESA L J. A numerical study of storm surge and inundation in the Croatan-Albemarle- Pamlico Estuary System[J]. Estuarine, Coastal and Shelf Sciences, 2004, 59: 121-137.
[40] PENG M, XIE L, PIETRAFESA L J. A numerical study on hurricane induced storm surge and inundation in Charleston Harbor, South Carolina[J]. J Geophys Res, 111, C08017.