基于历史观测的温盐剖面资料, 采用回归分析方法统计出海面温度异常、海面动力高度异常与温度剖面异常之间的相关关系; 然后利用高分辨率的卫星遥感海表面温度(SST)和卫星观测海面高度(SSH)信息重构了三维海洋温度场。在台湾岛周边海域建立了时间分辨率为天、空间分辨率为0. 25°×0. 25°的三维温度分析场。通过与实测资料的比较分析, 文章所构建的分析场能够较好地描述海洋三维温度场的结构特征, 能够较为真实地反映海洋的中尺度变化过程。该分析场可以作为海洋数值模式的初始场, 也可以作为“伪观测”同化到海洋数值再分析和预报系统中, 进而改善三维温、盐、流的数值再分析和预报。
The correlation between sea surface temperature (SST) anomaly, sea surface dynamic height (SSH) anomaly and temperature profile anomaly is constructed by using regression analysis, which is based on the historical temperature-salinity profiles. Combined with the correlation, satellite SST and satellite SSH reconstruct a three-dimensional temperature field, whose temporal resolution is daily and spatial resolution is 0.25白0.25? near Taiwan Island. Compared with the observational temperature profiles, the reconstructed temperature field can represent the property and structure of the temperature field and better describe meso-scale variability of the ocean temperature filed. This analysis field can serve as not only the initial field of a numerical model but also pseudo temperature observation, which may be assimilated into the system of ocean reanalysis and forecast in order to improve the output.
[1] De Mey P. Data assimilation at the oceanic mesoscale: A review [J]. J Meteor Soc Japan, 1997, 75: 415-427.
[2] Hurlburt H E. The potential for ocean prediction and role of altimeter data [J]. Mar Geod, 1984, 8: 17-66.
[3] Thacker W C, Long R B. Fitting dynamics to data [J]. J Geophys Res, 1988, 93(C2): 1227-1240.
[4] Hurlburt H E, Fox D N, Metzger J. Statistical inference of weekly correlated subthermocline fields from satellite altimeter data [J]. J Geophys Res, 1990, 95: 11375-11409.
[5] Carnes M R, Mitchell J L, DeWitt P W. Synthetic temperature profiles derived from Geosat altimetry: Comparison with air-dropped expendable bathythermograph profiles [J]. J Geophys Res, 1990, 95(C3): 17979-17992.
[6] Carnes M R, Teague W J, Mitchell J L. Inference of subsurface thermohlaline structure from fields measurable by satellite [J]. J Atmos Oceanic Technol, 1994, 11: 551-566.
[7] Gavart M, De Mey P. Isopycnal EOFs in the Azores Current region: A statistical tool for dynamical analysis and data assimilation [J]. J Phys Oceanogr, 1997, 27: 2146-2157.
[8] Pascual A, Gomis D. Use of surface data to estimate geostrophic transport [J]. J Atmos Oceanic Technol, 2003, 20: 912-926.
[9] Bruno B N, Santoleri R. Reconstructing synthetic profiles from surface data [J]. J Atmos Oceanic Technol, 2004, 21: 693-703.
[10] Fox D N, Teague W J, Berron C N, et al. The modular ocean data assimilation system [J]. J Atmos Oceanic Technol, 2002, 19: 240-252.
[11] Guinehut S, Traon P-YLe, Larnicol G, et al. Combining Argo and remote-sensing data to estimate the ocean three dimensional temperature fields—A first approach based on simulated observations [J]. Journal of Marine Systems, 2004, 46(1-4): 85-98.
[12] Olber D, Gouretski V, Seib G, et al. Hydrographic Atlas of the Southern Ocean[M]. Alfred Wegener Institute, 1992: 17.
[13] Murphy A H. Skill score based on the mean square error and their relationships to the correlation coefficient [J]. Mon Weather Rev, 1988, 116: 2417-2424.
[14] Chu P C, Lu S H, Chen Y C. Evaluation of the Princeton Ocean Model using the South China Sea Monsoon Experiment (SCSMEX) data [J]. J Atmos Oceanic Technol, 2001, 18: 1521-1539.