海洋水文学

南海 18°N 断面 上的体积和热盐输运

  • 葛黎 丽 ,
  • 程旭华 ,
  • 齐义泉 ,
  • 王东晓
展开
  • 1. 热带海洋环境国家重点实验室 中国科学院南海海洋研究所 , 广东 广州 510301; 2. 江苏省海洋环境监测预报中心 , 江苏 南京 210036
葛黎丽 (1984 — ), 女 , 河南省南阳市人 , 硕士 , 主要从事海洋环境动力分析研究。 E-mail gelili@scsio.ac.cn

收稿日期: 2010-06-29

  修回日期: 2011-01-11

  网络出版日期: 2012-03-13

基金资助

国家重点基础研究发展计划项目 (2010CB950400); 中国科学院知识创新工程重要方向项目 (KZCX2-EW-204); 国家自然科学 (40806004)

Upper-layer geostrophic volume, heat and salt transports across 18° in the South China Sea

  • Ge-Li- Li ,
  • Cheng-Xu-Hua- ,
  • Ji-Xi-Quan- ,
  • Wang-Dong-Xiao
Expand
  • 1. State Key Laboratory of Tropical Oceanography SouthChinaSeaInstituteofOceanology , CAS , Guangzhou 510301, China ; 2. Jiangsu Marine Enviromental Monitoring and Forecasting Center , Nanjing 210036, China

Received date: 2010-06-29

  Revised date: 2011-01-11

  Online published: 2012-03-13

摘要

以2005—2008年4年中南海北部开放航次所获得的水文观测资料为基础, 结合卫星高度计遥感资料, 采用动力计算方法计算南海18°N断面的经向地转流, 并与声学多普勒流速剖面仪(AcousticDopplerCurrentProfilers, ADCP)走航观测资料进行对比, 进而计算出通过南海18°N断面1000m以浅的各站位以及断面上总的经向地转体积、热、盐输运量。结果表明, 2005—2008年南海北部开放航次期间18°N断面上的经向地转流呈相间带状分布, 各站位经向地转流流速垂向分布和ADCP观测的大体一致。从卫星高度计获得的海面高度场可知, 经向地转流流向的空间变化与海洋中尺度涡旋的活动密切相关。2005—2007年航次期间南海18°N断面上1000m以浅总的经向地转体积、热、盐输运均为南向输运, 其3年的平均输运量分别为-11. 8Sv(1Sv=106m3·s-1)、-0. 38PW、-418. 8Gg·s-1; 其年际间差别较大, 经向地转体积、热、盐输运量均为2005年最大, 2006年次之, 2007年最小。2008年110°—117°E之间1000m以浅总的海水地转体积、热、盐输运量分别为-7. 3Sv、-0. 22PW、-259. 4Gg·s-1

本文引用格式

葛黎 丽 , 程旭华 , 齐义泉 , 王东晓 . 南海 18°N 断面 上的体积和热盐输运[J]. 热带海洋学报, 2012 , 31(1) : 10 -17 . DOI: 10.11978/j.issn.1009-5470.2012.01.010

Abstract

Thermal wind relation is applied to compute the upper 1000-m layer meridional geostrophic velocity across the 18° section in the South China Sea (SCS), based on the hydrographic data collected during the open cruises of northern SCS from 2005 to 2008 and merged altimetry data. The geostrophic velocity is compared with the Acoustic Doppler Current Profilers (ADCP) observations, and the upper 1000-m layer geostrophic volume, heat and salt transports across the 18° section in the SCS are estimated. The results indicate that the meridional geostrophic velocities display belt distribution along the section during the cruises . The estimated geostrophic velocities are in good agreement with the ADCP data except at few stations. Sea surface height distribution derived from altimeter data shows that the distribution of meridional geostrophic velocities is closely related with mesoscale eddies. T he total geostrophic volume, heat and salt transports of 2005 - 2007 in the upper 1000 m are all southward across 18°, and the three-year-averaged values are - 11.8 Sv, - 0.38 PW, and - 418.8 Gg° - 1 , respectively. However, the transport varies greatly from year to year. The volume, heat and salt transports of 2005 were the largest, while those of 2007 were the smallest. The geostrophic volume, heat and salt transports of 2008 from 110° to 117° are - 7.3 Sv, - 0.22 PW, and - 259.4 Gg° - 1 , respectively.

参考文献

[1] WYRTKI K. Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959—1961[R]//NAGA Report 2. San Diego: Univisity of California at San Diego, 1961: 1–195.
[2] 徐锡 桢, 邱章, 陈惠昌. 南海水平环流概述 [ G ]// 中国海洋湖沼学会水文气象学会学术会议论文集 (1980). 北京: 科学出版社, 1982: 137–145.
[3] QU TANGDONG. Upper-layer circulation in the South China Sea[J]. J Phys Oceanogr, 2000, 30: 1450–1460.
[4] LIU ZHENGYU, YANG HAIJUN, LIU QINYU. Regional dynamics of seasonal variability in the South China Sea[J]. J Phys Oceanogr, 2001, 31: 272–284.
[5] LIU QINYU, KANEKO A, SU JILAN. Recent progress in studies of the South China Sea circulation[J]. J Oceanogr, 2008, 64(5): 753–762.
[6] GANACHAUD A, WUNSCH C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data[J]. Nature, 2000, 408: 453–457.
[7] KAWAI Y, DOI T, TOMITA H, et al. Decadal-scale changes in meridional heat transport across 24°N in the Pacific Ocean[J]. J Geophys Res, 2008, 113: C08021, 18.
[8] MEINEN C S, WATTS D R, CLARKE R A. Absolutely referenced geostrophic velocity and transport on a section across the North Atlantic current[J]. Deep-Sea Res: Part Ⅰ, 2000, 47: 309–322.
[9] ORVIK K A, SKAGSETH O, MORK M. Atlantic inflow to the Nordic Seas: Current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar -CTD observations 1995–1999[J]. Deep-Sea Res (Part Ⅰ ), 2001, 48: 937–957.
[10] JONSSON S. Volume flux and fresh water transport associated with the East Icelandic Current [J]. Prog in Oceanogr, 2007, 73: 231–241.
[11] CHU P C, LI RONGFENG. South China Sea isopycnal -surface circulation[J]. J Phys Oceanogr, 2000, 30: 2419–2438.
[12] 方国洪, 魏泽勋, 崔 秉昊, 等. 中国近海域际水、热、盐输运: 全球变网格模式结果 [J] .中国科学: D 辑, 2002, 32(12): 969–977.
[13] JAN S, CHAO S Y. Seasonal variation of volume transport in the major inflow region of the Taiwan Strait: the Penghu Channel [J]. Deep-Sea Res: Part Ⅱ, 2003, 50: 1117–1126.
[14] 方文东, 郭忠信, 黄羽 庭. 南海南部海区的环流观测研究 [J]. 科学通报, 1997, 42(21): 2264–2271.
[15] HO C R, KUO N J, ZHENG Q, et al. Dynamically active areas in the South China Sea detected from TOPEX/POSEIDON satellite altimeter data[J]. Remote Sens Environ, 2000, 71: 320–328.
[16] 李立. 南海季节环流— TOPEX/POSEIDON 卫星测高应用研究 [J]. 海洋学报 2000, 22(6): 13–26.
[17] STEWART R H. Introduction to physical oceanography[M]. College Station: Texas A&M University, 2002: 341.
[18] ZHANG Z Z, LU Y, HSU H. Detection ocean currents from satellite altimetry, satellite gravity and ocean data[J]. Dynamic Planet, 2007, 130 (Part Ⅰ ): 17–22.
[19] 袁耀初, 刘勇刚, 楼 如云, 等. 2000 年夏季南海环流的改进逆方法计算 [J]. 海洋学报, 2004, 26(1): 1–13.
[20] WANG GUIHUA, SU JILAN, CHU P C. Mesoscale eddies in the South China Sea observed with altimeter data [J]. Geophys Res Lett, 2003, 30 (21): 2121.
[21] FANG GUOHONG, KWOK Y-K, YU KEJUN, et al, Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand[J]. Cont Shelf Res, 1999, 19: 845–869.
[22] ZU TINGTING, GAN JIANPING, EROFEEVA S Y. Numerical study of the tide and tidal dynamics in the South China Sea[J]. Deep-Sea Res: Part Ⅰ, 2008, 55: 137−154.
文章导航

/