利用GHRSSTL4、QuikSCAT、OAFLUX以及SeaWiFSL3资料分析了近赤道罕见台风“画眉”生成前后海表温度SST及其感热通量、潜热通量和叶绿素a浓度的变化。在台风“画眉”生成之前, 中南半岛沿岸海表平均温度较其他区域低, 并且在南海盛行东北风, 在台风生成区有一明显的气旋性涡旋存在。南海北部地区潜热通量和感热通量均较大, 而在台风的生成区域仅感热通量较大。台风“画眉”使其路径右侧的区域发生海表温度降低, 相对于其他强度较强的台风降温较小, 海表温度在马来半岛以东洋面以及马六甲海峡降低明显, 降低约2— 2. 5℃。与高纬度的台风类似, 台风“画眉”使中南半岛沿岸以及马来半岛与苏门答腊岛之间的地区叶绿素a浓度相对于台风前增大0. 6mg· m-3以上。
We use GHRSST L4, QuikSCAT, OAFLUX and SeaWiFS L3 data sets to analyze the change of sea surface temperature (SST), sensible heat flux, latent heat flux and chlorophyll - a concentration in the equatorial ocean where Typhoon Vamei passed through. Before Typhoon Vamei was generated, there was a significant cyclonic vortex over the equatorial region of the southern South China Sea, the average SST in the coastal region of South China Peninsula was lower than other regions, and northeasterly wind prevailed in this area. The latent heat flux and sensible heat flux were larger in the genesis location of Typhoon Vamei . As usual, the cooling occurred on the right side of the track of Typhoon Vamei. The SST decreased by about 2 - 2.5 ℃ . However, compared to higher-latitude typhoons, the cooling was much small in this case. The region where SST decreased significantly was between the east of the Malay Peninsula and the Strait of Malacca. Similar to higher-latitude typhoons, Typhoon Vamei increased chlorophyll- a concentration in the coastal area between Sumatra and the Malay Peninsula by 0.6 mg·m - 3 or more compared to the pre-typhoon value.
[1] GRAY W. Global view of tropical disturbances and storms[J]. Mon Wea Rev, 1968, 96: 669-700.
[2] ANTHES R A. Tropical cyclones: their evolution, structure and effects [M]. Boston: American Meteorological Society, 1982: 46-54.
[3] HOLLIDAY C R, THOMPSON A H. An unusual near-equatorial typhoon [J]. Mon Wea Rev, 1986, 114: 2674-2677
[4] McBRIDE J L. Tropical cyclone formation[M]//ELSBERRY R L. Global perspective on tropical cyclones. Gevena: World Meteorological Organization, 1995: 63-105.
[5] FORTNER L E. Typhoon Sarah, 1956[J]. Bull Amer Meteor Soc, 1958, 39: 633-639.
[6] CHANG C P, LIU C H, KUO H C. Typhoon Vamei: An equatorial tropical cyclone formation[J]. Geophys Res Lett, 2003, 30(3): 1150. doi: 10. 1029/2002GL016365.
[7] JOINT TYPHOON WARNING CENTER. Annual tropical cyclone report[R/OL]. Pearl Harbor: Naval Pacific Meteorology and Oceanography Center / Joint Typhoon Warning Center, 2001: 160. http: //www. usno. navy. mil/JTWC/annual-tropical-cyclone-reports.
[8] DeMARIA M, PICKLE J D. A simplified system of equations for simulations of tropical cyclones[J]. J Atmos Sci, 1988, 45(10): 1542-1554.
[9] TANGANG F T, JUNENG L, REASON C J. MM5 Simulated evolution and structure of typhoon Vamei (2001)[M]// CHEN Y-T. Advances in geosciences, solid earth, ocean science & atmospheric science. Singapore: World Scientific Publishing Company, 2006: 191-207.
[10] JUNENG L, TANGANG F T, REASON C J C, et al. . Simulation of tropical cyclone Vamei (2001) using the PSU/NCAR MM5 model[J]. Meteorol Atmos Phys, 2007, 97: 273-290.
[11] CHAMBERS C R S, LI T. Simulation of formation of a near-equatorial typhoon Vamei (2001)[J]. Meteorol Atmos Phys, 2007, 98: 67-80.
[12] LIU G R, LIU C C, HUANG C S, et al. Diagnosing the growth of equatorial typhoon Vamei (2001) from an energy standpoint[J]. Terr Atmos Ocean Sci, 2010, 21(5): 817-827.
[13] CHEN FEI, DU YAN, YAN LI, et al. Response of upper ocean currents to typhoons at two ADCP moorings west of the Luzon Strait[J]. Chin J Oceanol Limnol, 2010, 28(5): 1002-1011.
[14] CHEN YING-JUN, XIE QIANG, MENG WEI-GUANG, et al. A numerical study of the influence of sea surface temperatures with different temporal resolutions on Typhoon Dujuan over the South China Sea[J]. J Trop Meteorol, 2010, 16(2): 195-200.
[15] 孙璐, 王东晓, 胡建宇, 等. 南海北部海洋对局地生成热带气旋的响应 [J]. 热带海洋学报, 2008, 2 7(4): 11-19.
[16] 张志旭, 齐义泉, 施平, 等. 波致应力对台风天气下南海上层海流的影响分析 [J]. 热带海洋学报, 2007, 26(1): 1-8
[17] YU L, WELLER R A. Objectively analyzed air-sea heat fluxes for the global ice free oceans (1981-2005) [J ]. Bull Amer Meteor Soc, 2007, 88: 527-539.
[18] FAIRALL C W, HARE J E, GRACHEV A A, et al. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm[J]. J Climate, 2003, 16: 571-591.
[19] YU L, JIN X, WELLER R A. Multidecade global flux datasets from the objectively analyzed air-sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables[R]//OAFlux Project Technical Report. Woods Hole: Woods Hole Oceanographic Institution, 2008: 64.
[20] LIN I I, LIU W T, WU C, et al. New evidence for enhanced ocean primary production triggered by tropical cyclone[J]. Geophys Res Lett, 2003, 30(13), 1781. doi: 10. 1029/2003GL017141.
[21] SHANG S, LI L, SUN F, et al. Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001[J]. Geophys Res Lett, 2008, 35: L10602, doi: 10. 1029/ 2008GL033502.
[22] SAKAIDA F, KAWAMURA H, TOBA Y. Sea surface cooling caused by typhoons in the Tohoku area in August 1989 [J]. J Geophys Res, 1998, 103: 1053-1065.
[23] LIN I I, LIU W T, WU C C, et al. Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling[J]. Geophys Res Lett, 2003, 30 (3): 1131. doi: 10. 1029/2002GL015674
[24] SHI W, WANG M. Observations of a hurricane Katrina-induced phytoplankton bloom in the gulf of Mexico[J]. Geophys Res Lett, 2007, 34(2): L11607, doi: 10. 1029/2007GL029724.