海洋物理学

分层水体对表层辐照度比影响的蒙特卡罗分析

  • 黄二 辉 ,
  • 杨燕明
展开
  • 国家海洋局第三海洋研究所海洋声学与遥感开放实验室 , 福建 厦门 361005
黄二辉 (1978 — ), 男 , 福建省厦门市人 , 硕士 , 助理研究员 , 主要从事海洋遥感方面的研究工作。 E-mail huangerhui@gmail.com

收稿日期: 2010-07-06

  修回日期: 2010-10-18

  网络出版日期: 2012-03-13

基金资助

国家海洋局基本科研业务费专项资金资助项目 ( 海三科 2007013); 国家海洋局青年基金重点项目 (2009429); 卫星海洋环境动力学国家重点实验室开放研究 (200507) 资助

Analysis of influence of stratified water bodies on underwater irradiance ratio by Monte Carlo model

  • Huang-Er- Hui ,
  • Yang-Yan-Meng-
Expand
  • Open Lab of Ocean Acoustic and Remote Sensing , Third Institute of Oceanography , SOA , Xiamen 361005, China

Received date: 2010-07-06

  Revised date: 2010-10-18

  Online published: 2012-03-13

摘要

众多海洋观测数据表明, 在真光层深度范围内, 海水固有光学特性和光学有效组分的剖面分层分布是广泛存在的, 而很多遥感反演模型的建立基于均一分布假设, 尤其是在经验模型的建立中, 往往只利用某一深度或各深度平均的光学有效组分浓度与水体光谱的统计关系。文章通过模拟平静水面水下光的辐射传输, 分别研究了叶绿素、无机悬浮物浓度垂直分布结构对水下辐照度比的影响, 并对比了两类分层水体权重函数等效浓度计算式及相应水下辐照度比, 结果表明, 对于分层水体, 透射深度和层化强度是影响等效浓度值计算误差的主要因素, 透射越深, 表层层化越强, 水体层化对水下辐照度比的影响就越大, 但其计算误差也越大。Gondon等效浓度计算结果比较接近实际值, 而Zaneveld计算式则高估了分层水体的等效浓度值。

本文引用格式

黄二 辉 , 杨燕明 . 分层水体对表层辐照度比影响的蒙特卡罗分析[J]. 热带海洋学报, 2012 , 31(1) : 42 -49 . DOI: 10.11978/j.issn.1009-5470.2012.01.042

Abstract

Many in-situ data indicate that the vertical stratification of the inherent optical properties and optical active constitutes in euphoric depth is a common phenomenon in most ocean water. Most of satellite retrieval algorithms of the optical constitutes concentration are, however, based on the assumption of homogeneous ocean water, especially for empirical retrieval models, which are usually based on the statistical relation between the reflectance spectral of surface and the depth-averaged constitute concentration or that of a certain depth. Using the underwater optical radiative transfer model, the influences of vertically stratified concentration of chlorophyll and suspended sediment matter on the irradiance ratio at the depth of 0- m are respectively analyzed. The two computation formulas of depth-weighted equivalent concentration of stratified water and their responding irradiance ratio at 0- m depth are then compared. The results indicate that the primary error sources is the light penetration depth and the intensity of stratification: the deeper the penetration and the more distinct stratification, the greater the effect of stratified water on the value of irradiance ratio at 0- m depth, as well as the error of depth-weighted equivalent concentration. Gordon’s computation results of equivalent concentration are more accurate, and the Zaneveld ’s results overestimate the equivalent concentration of stratified water.

参考文献

[1] DENG Ming, LI Yan. Use of SeaWiFS imagery to detect three-dimensional distribution of suspended sediment [J]. International Journal of Remote Sensing, 2003, 24(3): 519-534. [2] G ordon H R. Estimation of the depth of sunlight penetration in the sea for remote sensing [J]. Applied Optics, 1975, 14(2): 413-416. [3] 刘英, 李国胜. 渤海海域 MODIS 波段衰减深度研究 [J]. 海洋学报, 2009, 31(3): 21-29. [4] Gordon H R. Remote sensing of optical properties in continuously stratified waters [J]. Applied Optical, 1978, 17(12): 1893-1897. [5] Gordon H R, Clark D K. Remote sensing optical properties of a stratified ocean: an improved interpretation [J]. Applied Optics, 1980, 19: 3428-3430. [6] Zaneveld J R V. Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation [J]. Applied Optics, 1982, 21(22): 4146-4150. [7] Gordon H R. Diffuse reflectance of the ocean: influence of non-uniform phytoplankton pigment profile [J]. Applied Optics, 1992, 31(12): 2116-2129. [8] Gordon H R. , Boynton G C. Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies [J]. Applied Optics, 1998, 37(18): 3386-3896. [9] Malgorzata S, Dariusz S. Effects of a nonuniform vertical profile of chlorophyll concentration on remote-sensing reflectance of the ocean [J]. Applied Optics, 2005, 44(9): 1735-1747. [10] Zaneveld J R, Barnard A, Boss A. Theoretical derivation of the depth average of remotely sensed optical parameters [J]. Optics Express, 2005, 13(22): 9052-9061. [11] Leathers R A, Downes T V, Davis C O, et al. Monte Carlo radiative transfer simulations for ocean optics: A practical guide[R]//Naval Research Laboratory. Report. NRL/MR/5660-04-8819, 2004: 1-50. [12] 唐军武. 海洋光学特性模拟与遥感模型 [D]. 北京: 中国科学院遥感应用技术研究所, 1999: 72-91. [13] Lewis M R, Cullen J J, Platt T. Phytoplankton and thermal structure of the upper ocean: consequences of non-uniformity in the chlorophyll profile [J]. Journal of Geophysical Research. 1983, 88: 2565-2570. [14] Platt T, Sathyendranath S, Caverhill C, et al. , Ocean primary production and available light: further algorithms for remote sensing [J]. Deep-Sea Research, 1988, 35: 855-879. [15] 韩丹 岫. 黄东海悬浮物浓度垂向分布的统计分析与实验研究 [D]. 青岛: 中国科学院海洋研究所, 2006: 77-80. [16] Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure water. Ⅱ. Integrating cavity measurements [J]. Applied Optics, 1997, 36(33): 8710-8723. [17] Bukata R P, Jerome J H, Kondratyev K Y, et al. Optical Properties and Remote Sensing of Inland And Coastal Waters [M]. New York: Chemical Rubber Company Press, 1995: 154-235. [18] Petzold T J. Volume Scattering Functions for Selected Ocean Waters [R]. //Technical Report SIO 72–78. Scripps Institution of Oceanography, University of California, SanDiego, LaJolla, Calif, 1972: 1-79. [19] Mobley C D, Gentili B, Gordon H R, et al. Comparison of numerical models for computing under water light fields [J]. Applied Optics, 1993, 32(36): 7484-7504.
文章导航

/