海洋水文学

ENSO 循环过程中次表层海洋信号的传播和变化 *

  • 王宏 娜 ,
  • 陈锦年 ,
  • 刘钦 燕
展开
  • 1. 中国科学院海洋研究所 , 山东 青岛 266071; 2. 中国科学院海洋环流与波动重点实验室 , 山东 青岛 266071; 3. 热带海洋环境国家重点实验室 ( 中国科学院南海海洋研究所 ), 广东 广州 510301
王宏娜 (1981 — ), 女 , 山东省乳山县人 , 助理研究员 , 博士 , 主要从事大尺度海气相互作用研究。

收稿日期: 2010-09-26

  修回日期: 2011-01-17

  网络出版日期: 2012-06-05

基金资助

热带海洋环境国家重点实验室 ( 中国科学院南海海洋研究所 ) 开放课题 (LED0903); 国家自然科学 (40676017); 中国科学院知识创新工程重要方向项目 (KZCX2-YW-214)

Propagation and variability of subsurface oceanic signal during ENSO cycle

  • Wang-Hong- Na ,
  • Chen-Jin-Nian ,
  • Liu-Qin- Yan
Expand
  • 1. Institute of Oceanology , Chinese Academy of Sciences , Qingdao 266071, China 2. Key Laboratory of Ocean Circulation and Waves , Chinese Academy of Sciences , Qingdao 266071, China 3. State Key Laboratory of Tropical Oceanography ( SouthChinaSeaInstituteofOceanology, Chinese Academy of Sciences ), Guangzhou 510301, China

Received date: 2010-09-26

  Revised date: 2011-01-17

  Online published: 2012-06-05

摘要

利用 SODA 等资料分析了热带太平洋次表层海洋要素的变化特征 , 结果表明 , ENSO 循环过程中次表层异常海温信号在赤道外向西传播的路径与温跃层深度的分布有一定关系 , 10ºN 附近是气候平均温跃层深度的极小值区域 , 温跃层在该区域形成了一个从东到西的阻隔带 , 阻挡了来自赤道地区的 ENSO 信号继续向北传播 , 从而转向西传播|而南半球温跃层深度的气候分布不具备这一特征 , 不利于 ENSO 信号在南半球的向西传播。进 一步的研究还表明 , ENSO 信号在整个循环过程中 , 异常海温的主周期是变化的 , 特别是在沿 10ºN 附近向西传播的过程中 , ENSO 信号的主周期变化较大。推断西太平洋暖池区域的 ENSO 信号除了在循环过程中自东太平洋 10ºN 传来的以外 , 还受其他因素的影响 , 例如局地的大气变化引起的海温异常 , 以及来自中高纬度的异常海温信号等因素。

关键词: ENSO; 温跃层; 主周期

本文引用格式

王宏 娜 , 陈锦年 , 刘钦 燕 . ENSO 循环过程中次表层海洋信号的传播和变化 * [J]. 热带海洋学报, 2012 , 31(2) : 1 -6 . DOI: 10.11978/j.issn.1009-5470.2012.02.001

Abstract

The variability of subsurface ocean in the tropical Pacific was analyzed based on the simple ocean data assimilation (SODA) dataset. The results indicate that the path of anomalous temperature signal transmitting to the western Pacific in an ENSO cycle has close relationship with the depth distribution of thermocline. The climatological thermocline was very shallow along 10ºN. Therefore, the thermocline was like a ridge through the eastern to western Pacific under the sea surface. As a result, the anomalous ENSO signal coming from the equator could not get across this area to the north, so the signal in the eastern Pacific could only transmit to the western Pacific along this region. On the contrary, the thermocline in the southern Pacific does not have such a character and could not block the signal’s propagation from the equator to higher latitude. Further research indicates that the signal intensity of temperature anomaly changes in the ENSO cycle, especially when the signal is transmitted from the eastern Pacific to the western Pacific along 10ºN. Except for the temperature anomaly from 10ºN in the eastern Pacific, the temperature anomaly that ultimately approaches the western Pacific warm pool was also affected by the local surface wind in the North Pacific and the temperature anomaly from higher latitude.

参考文献

BJERKNESS J. Atmospheric teleconnections from the equatorial Pacific[J]. Monthly Weather Review, 1969, 97(3): 163-172. WYRTKI K. El Ni?o-the dynamic response of the equatorial Pacific Ocean to atmospheric forcing[J]. Journal of Physical Oceanography, 1975, 5: 572-584. PHILANDER S G H. El Ni?o Southern Oscillation phenomena[J]. Nature, 1983, 302: 295-301. SUAREZ M J, SCHOPF P S. A delayed action oscillator for ENSO[J]. Journal of the Atmosphere Science, 1988, 45: 3283-3287. NEELIN J, BATTISTI D, HIRST A, et al. ENSO theory[J]. Journal of Geophysical Research, 1998, 103(C7): 14261- 14290. MCCREARY J P, ANDENSON D L T. A simple model of El Ni?o and the Southern Oscillation[J]. Monthly Weather Review, 1984, 112: 934-946. ZEBIAK S E, CANE M A. A model El Ni?o/Southern Oscillation[J]. Monthly Weather Review, 1987, 115: 2262-2278. WANG BIN. Interdecadal changes in El Ni?o onset in the last four decades[J]. Journal of Climate, 1995, 8: 267-285. MCPHADEN M J, ZEBIAK S E, GLANTZ M H. ENSO as an integrating concept in earth science[J]. Science, 2006, 314: 1740-1745. ASHOK K, BEHERA S K, RAO S A, et al. El Ni?o Modoki and its possible teleconnection[J]. Journal of Geophysical Research, 2007, 112, C11007, doi:10.1029/2006JC003798. ZHANG RONGHUA, LEVITUS S. Structure and evolution of interannual variability of the tropical Pacific upper ocean temperature[J]. Journal of Geophysical Research, 1996, 101(C9): 20501-20524. 巢纪平. 对“厄尔尼诺”、“拉尼娜”发展的新认识[J]. 中国科学院院刊, 2001, 6: 412-417. 巢纪平, 袁绍宇, 巢清尘, 等. 热带西太平洋暖池次表层暖水的起源——对1997/1998年ENSO事件的分析[J]. 大气科学, 2003, 27(2): 145-151. 陈锦年, 何宜军, 许兰英, 等. 赤道太平洋次表层海温异常的信号通道[C]//2002年第5届海峡两岸海洋科学研究讨会论文集. 基隆: 台湾海洋大学, 2002: 211. 陈锦年, 宋贵霆, 褚健婷, 等. 北赤道流区海温异常与ENSO循环[J]. 热带海洋学报, 2003, 22(4): 10-17. 李崇银. 关于ENSO本质的进一步研究[J]. 气候与环境研究, 2002, 7(2): 160-173. 于卫东, 乔方利. ENSO事件中热带太平洋上层海洋热含量变化分析[J]. 海洋科学进展, 2003, 21(4): 446-453. 乔方利, 于卫东, 袁业立. 厄尔尼诺/拉尼娜信号循环回路及其传播特性研究[J]. 海洋学报, 2004, 26(4): 1-8. 孟祥凤, 吴德星, 林霄沛. ENSO循环相关的海洋异常信号传播特征及其机制[J]. 热带海洋学报, 2004, 23(6): 22-29. 赵永平, 陈永利, 王凡, 等. 热带太平洋海洋混合层水体振荡与ENSO循环[J]. 中国科学D辑: 地球科学, 2007, 37(8): 1120-1133. 李崇银, 穆明权. 厄尔尼诺的发生与赤道西太平洋次表层海温异常[J]. 大气科学, 1999, 23(5): 513-521. 巢纪平, 蔡怡. ENSO事件中次表层海温距平在10oN附近向西传播的机理[J]. 气象学报, 2005, 63(4): 385-390. MCPHADEN M J, ZHANG DONGXIAO. Slowdown of the meridional overturning circulation in the upper Pacific Ocean[J]. Nature, 2002, 415(7): 603-608. CHEN JINNIAN, CHU JIANTING, XU LANYING. Impact of the El Nino on the variability of the Antarctic sea ice extent[J]. Chinese Journal of Polar Science, 2004, 15(1): 28-38. YEH S W, KIRTMAN B P. On the relationship between the interannual and decadal SST variability in the North Pacific and tropical Pacific Ocean[J]. Journal of Geophysical Research, 2003, 108(D11): 4344. 李崇银, 周亚萍. 热带大气季节内振荡和ENSO的相互关系[J]. 地球物理学报, 1994, 37: 17-26. 李崇银, 穆穆, 周广庆, 等. ENSO机理及其预测研究[J]. 大气科学, 2008, 32(4): 761-781.
文章导航

/