海洋地貌学

“门” 地貌单元的能量耗散和过程机制

  • 倪培桐 ,
  • 吴超羽 ,
  • 刘欢
展开
  • 1. 中山大学环境科学与工程学院 , 广东 广州 510275; 
    2. 广东省水利水电科学研究院 , 广东 广州 510630; 
    3. 中山大学近岸海洋科学与技术研究中心 , 广东 广州 510275
倪培桐 (197 1 — ), 男 , 山东省泰安市人 , 博士 , 从事河口动力学研究。

收稿日期: 2010-09-08

  修回日期: 2011-01-16

  网络出版日期: 2012-06-05

基金资助

国家自然科学 (41006050)

Energy dissipation and its mechanism induced by “gate” topography

  • Ni-Pei-Dong ,
  • Tun-Chao-Hu ,
  • Liu-Huan
Expand
  • 1. School of Environmental Science and Engineering of Sun Yat-sen University , Guangzhou 510275, China 
    2. Guangdong Research Institute of Water Resources and Hydropower , Guangzhou 510630, China 
    3. Center for Coastal Ocean Science and Technology Research , Sun Yat-sen University, Guangzhou 510275, China

Received date: 2010-09-08

  Revised date: 2011-01-16

  Online published: 2012-06-05

摘要

基岩岛屿组成的 “ 门 ” 地貌单元是 珠江河口区别于世界其他河口的重要地貌特征之一。文章基于 重整化群 k-ε 湍流模型 ( RNG k-ε) 的 FLOW3D 流体计算模型研究了 “ 门 ” 地貌单元的时均动力结构及湍流能耗特性。 “ 门 ” 地形致动力结构伴随不同类型能耗区。根据能耗空间分布特性可分为核心区 ( A1 区 ) 、混合区 ( A 2 区 ) 、上游区 ( A3 区 ) 、下游区 ( A4 区 ) 。 “ 门 ” 地形作用下 , 不同分区的动力结构、湍流特性、能量转化、能量耗散特征及其驱动机制不同。

本文引用格式

倪培桐 , 吴超羽 , 刘欢 . “门” 地貌单元的能量耗散和过程机制[J]. 热带海洋学报, 2012 , 31(2) : 34 -40 . DOI: 10.11978/j.issn.1009-5470.2012.02.005

Abstract

The Pearl River Estuary system is distinguished from other estuary systems with its “men” (meaning “gate” in Chinese), a special morphological unit, which produces complicated average flow and turbulent flow, and impacts its energy dissipation. Based on FLOW3D’s RNG (Re-Normalization Group) k-ε model, the authors studied the energy dissipation and its mechanism induced by “gate” topography. The sub-area of the energy dissipation zone can be distinguished with the jet core zone (A1 zone), the mixing zone (A2 zone), the far zone (A3 zone and A4 zone). The conservation of mechanical energy and the mechanism of these subareas are different.

参考文献

UNCLE R. Estuarine physical processes research: Some recent studies and progress[J]. Estuarine, Coastal and Shelf Science, 2002, 55: 829-856.
SIGNELL R P, GEYER W R. Transient eddy formation around headlands[J]. Journal of Geophysical Research, 1991, 96(C2): 2561-2575.
LUECK R G, MUDGE T D.Topographically induced mixing around a shallow seamount[J]. Science, 1997, 276: 1831-1833.
FURUKAWA K, WOLANSKI E. Shallow-water Frictional Effects in Island Wakes[J]. Estuarine, Coastal and Shelf Science, 1998, 46: 599-608.
NEILL S P, ELLIOTT A J. In situ measurements of spring-neap variations to unsteady island wake development in the Firth of Forth, Scotland[J]. Estuarine, Coastal and Shelf Science, 2004, 60(2): 229-239.
KUNZE E G, SMITH G. The role of small-scale topography in turbulent mixing of the global ocean[J]. Oceanography, 2004 17(1): 55-64.
吴超羽, 任杰, 包芸, 等. 珠江河口“门”的地貌动力学初探[J]. 地理学报, 2006, 61(5): 537-548.
吴超羽, 包芸, 任杰, 等. 珠江三角洲及河网形成演变的数值模拟和地貌动力学分析: 距今6000—2500a [J]. 海洋学报, 2006, 28(4): 64-80.
吴超羽, 何志刚, 任杰, 等. 珠江三角洲中部子平原形成演变机理研究——以大鳌平原为例[J]. 第四纪研究, 2007, 27(5): 814-827.
刘欢. 珠江河口地形致高能耗区的消能特点和机理研究[D]. 广州: 中山大学, 2009:176-177.
刘欢, 吴超羽, 许炜铭, 等. 珠江河口底边界层湍流特征量研究[J]. 海洋工程, 2009, 27(1): 62-69.
倪培桐, 地形致动力场对珠江河口能量耗散及其作用机制[D]. 广州: 中山大学, 2010: 203-225.
王福军. 计算流体力学分析——CFD 软件原理与应用[M]. 北京: 清华大学出版社, 2004: 112-143.
Flow Science Inc. FLOW-3D User’s Manual, version 9.3[M/CD]. Los Alamos, New Mexico:Flow Science Inc, 2008.
余常昭. 紊动射流[M]. 北京: 高等教育出版社, 1993: 4-5.
ZHONG L, LI M. Tidal energy fluxes and dissipation in the Chesapeake Bay[J]. Continental Shelf Research, 2006, 26(6): 752-770.
任杰, 吴超羽, 包芸. 珠江虎门口动力结构研究[J], 中山大学学报: 自然科学版, 2006, 45(3):105-109.
贾良文, 吴超羽, 任杰. 珠江口磨刀门河口动力平衡特点人珠江及人类活动对其影响[J]. 海洋工程, 2006, 24(2): 53-60.
吴晓星. 黄茅海河口主要动力结构分析及其三维数值模拟[D] . 广州: 中山大学, 2009: 101-103.
文章导航

/