海洋地球物理学

南海北部洋陆转换带地震反射特征和结构单元划分*

  • 朱俊江 ,
  • 丘学林 ,
  • 徐辉龙 ,
  • 詹文欢 ,
  • 赵明辉 ,
  • 卫小冬 ,
  • 孙金龙 ,
  • 杨睿 ,
  • 夏少红 ,
  • 黄海波
展开
  • 1.中国科学院边缘海地质重点实验室, 中国科学院南海海洋研究所, 广东, 广州 510301;2. 中国科学院广州能源研究所, 可再生能源与天然气水合物重点实验室, 广东, 广州 510640
朱俊江(1976—), 男, 甘肃省永昌县人, 副研究员, 博士, 研究方向为海洋地球物理。E-mail: jzhu@scsio.ac.cn
* 感谢 “实验2”号的全体船员和船上科学家为采集地震测线MCS2010-1数据所付出的劳动。感谢中国科学院地质与地球物理研究所常旭研究员和劳累公司的程大祥对Geometrics StrataVisor NZⅡ地震记录仪的帮助和指导。

收稿日期: 2011-08-25

  修回日期: 2011-09-18

  网络出版日期: 2012-09-11

基金资助

中国科学院南海海洋研究所青年人才领域项目(SQ200910); 国家自然科学基金项目(41006030, 41176054); 国家自然科学基金与广东省联合基金项目(U0933006)

Seismic reflection characteristic and structure unit division of a continent-ocean transition zone in the northern South China Sea

  • SHU Dun-Jiang ,
  • QIU Hua-Lin ,
  • XU Hui-Long ,
  • DAN Wen-Huan ,
  • DIAO Meng-Hui ,
  • WEI Xiao-Dong ,
  • SUN Jin-Long ,
  • YANG Rui ,
  • JIA Shao-Gong ,
  • HUANG Hai-Bei
Expand
  • 1. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2011-08-25

  Revised date: 2011-09-18

  Online published: 2012-09-11

摘要

张裂大陆边缘和盆地主要通过岩石圈的伸展作用形成, 被动大陆边缘岩石圈的减薄导致了岩浆的减压熔融, 最终形成了洋壳和减薄的转换带。处理和分析了2010年中国科学院南海海洋研究所“实验2”号采集的南海北部地球物理调查的多道地震数据(MCS2010-1), 总结了南海北部洋陆转换带的地震反射特征。转换带主要由北部裂陷期下沉区段, 中部海山或埋藏海山隆起带和靠近海盆一侧的掀斜断块带组成。通过对比以前南海北部采集的反射地震数据和折射地震波速度模型, 圈定了洋陆转换带的分布范围, 洋陆转换带的宽度在南海东北部是225km, 中部是160km, 西北部是110km。依据零星的大于6级地震震中分布, 揭示了南海北部洋陆转换带目前仍是一个地震构造活跃带。

本文引用格式

朱俊江 , 丘学林 , 徐辉龙 , 詹文欢 , 赵明辉 , 卫小冬 , 孙金龙 , 杨睿 , 夏少红 , 黄海波 . 南海北部洋陆转换带地震反射特征和结构单元划分*[J]. 热带海洋学报, 2012 , 31(3) : 28 -34 . DOI: 10.11978/j.issn.1009-5470.2012.03.004

Abstract

Rifted continental margins and basins are mainly formed by the lithospheric extension. Thinned lithosphere of passive continental margins leads to decompression melt of magma and created oceanic crust as well as thinned ocean-continent transition zone. A multi-channel seismic Line MCS 2010-1 in the northern South China Sea, acquired by the R/V "Shiyan 2" of the South China Sea Institute of Oceanology in 2010, is processed and analyzed in this study. Reflection characteristics of a continent-ocean transition (COT) zone are summarized and outlined. Results show that the COT zone is mainly composed of the northern syn-rift subsidence zone, central volcanic or buried volcanic uplift zone, and tilt faulted blocks near the South China Sea basin. Compared to the previous seismic reflection data and refraction velocity models, the range of the COT zone is outlined, from about 225 km wide in the northeastern South China Sea, 160 km wide in the central to 110 km in the northern-central South China Sea. Epicenter distributions of sporadic and larger than 6 magnitude earthquakes suggest that the COT zone in the northern South China Sea is still an active seismic zone.

参考文献

[1] MCKENZIE D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters, 1978, 40: 25-32.

[2] RANERO C, P?REZ-GUSSINY? M. Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins[J]. Nature, 2010, 468: 294-300.

[3] ELDHOLM O, THIEDE J. ODP LEG SCIENTIFIC PARTY. Formation of the Norwegian Sea[J]. Nature, 1986, 319: 360-361.

[4] KORENAGA J, HOLBROOK W S, KENT G M, et al., Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography[J]. J Geophys Res, 2000, 105: 21591–21614.

[5] MUTTER J C, TALWANI M, STOFFA P L. Evidence for a thick oceanic crust off Norway[J]. J Geophys Res, 1984, 89: 483-502.

[6] MORGAN J V, BARTON P J, WHITE R S. The Hatton Bank continental margin-Ш. Structure from wide-angle OBS and multichannel seismic refraction profiles[J]. Geophys J Int,1989, 98: 367-384.

[7] WHITMARSH R B, AVEDIK F , SAUNDERS M R. The seismic structure of thinned continental crust in the northern Bay of Biscay[J]. Geophys J R Astr Soc, 1986, 86: 589-602.

[8] WHITE R S, MCKENZIE D, O’NIONS R K. Oceanic crustal thickness from seismic measurements and rare earth element inversions[J]. J Geophys Res, 1992, 97: 19683–19715.

[9] REID I D. Crustal structure of a nonvolcanic rifted margin east of Newfoundland [J]. J Geophys Res, 1994, 99 (B8): 15161-15180.

[10] KEEN C E, POTTER D P. Formation and evolution of the Nova Scotian rifted margin: Evidence from deep seismic reflection data[J]. Tectonics, 1995, 14 (4): 918–932.

[11] LAVIER L, MANATSCHAL G. A mechanism to thin the continental lithosphere at magmapoor margins[J]. Nature, 2006, 440: 324-328.

[12] YAN P, ZHOU D, LIU Z. A crustal structure profile across the northern continental margin of the South China Sea[J]. Tectonophysics, 2001, 338: 1-21.

[13] WANG T, CHEN M, LEE C, et al. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea[J]. Tectonophysics, 2006, 412: 237-254.

[14] QIU X, YE S, WU S, et al. Crustal structure across the Xisha Trough, northwestern South China Sea[J].Tectonophysics, 2001, 341: 179-193.

[15] 丘学林, 施小斌, 阎贫, 等. 南海北部地壳结构的深地震探测和研究新进展[J]. 自然科学进展, 2003, 13(3): 231-236.

[16] 丘学林, 赵明辉, 叶春明, 等. 南海东北部海陆联测与海底地震仪探测[J]. 大地构造与成矿学, 2003, 27(4): 295-300.

[17] 李家彪. 中国边缘海形成演化与资源效应[M]. 北京: 海洋出版社, 2008: 1-509.

[18] MINSHULL T A. Geophysical characterisation of the ocean–continent transition at magma-poor rifted margins[J]. C R Geoscience, 2009, 341: 382-393.

[19] TAYLOR B, HAYES D E. Origin and history of the South China Basin [M]//HAYES D E. Tectonic and geologic evolution of southeast Asian seas and islands, Geophys Monogr Ser. Washington D C : AGU, 1983, 27: 23-56.

[20] BOWIN C, LU R S, LEE C S, SCHOUTEN H. Plate convergence and accretion in Taiwan-Luzon region[J]. The American Association of Petroleum Geologists Bulletin, 1978, 62: 1645-1672.

[21] TAYLOR B, HAYES D E. The tectonic evolution of the South China Sea Basin[M] //HAYES D E. Tectonic and geologic evolution of southeast Asian seas and islands, Geophys Monogr Ser. Washington D C: AGU, 1980, 23: 89-104.

[22] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. J Geophys Res, 1993, 98 (B4): 6299–6328.

[23] BARCKHAUSEN U, ROESER H A. Seafloor spreading anomalies in South China Sea revisited[M]//CLIFT P, KUHNT W, WANG P, et al. Continent-ocean interactions within East Asian marginal seas, Geophys Monogr Ser. Washington D C: AGU , 2004, 149: 121-125.

[24] 姚伯初. 南海北部陆缘新生代构造运动初探[J]. 南海地质研究, 1993, 5: 1-12.

[25] 夏戡原, 黄慈流, 黄志明. 南海东北部台湾西南海区深部地壳结构特征[C]∥陈运泰, 滕吉文, 阚荣举, 等. 中国大陆地震学与地球内部物理学研究进展——庆贺曾融生院士八十寿辰.北京: 地震出版社, 2004: 135-145.

[26] 龚再升, 李思田, 谢泰俊, 等. 南海北部大陆边缘盆地分析与油气聚集[M]. 北京: 科学出版社, 1997: 1-510.

[27] 朱俊江, 丘学林, 詹文欢, 等. 南海东北部海沟的震源机制解及其构造意义[J]. 地震学报, 2005, 27(3): 260-268.

[28] 孙金龙, 夏少红, 徐辉龙, 等. 2010年南海北部海陆联测项目简介及初步成果[J]. 华南地震, 2010, 30 (6): 45-52.

[29] 刘建华, 南海中部地震反射波特征及其地质解释[J]. 海洋学报, 2000, 22: 73-80.

[30] 金庆焕. 南海地质与油气资源[M].北京: 地质出版社, 1989: 41-310.

[31] ZHAO MINGHUI, QIU XUELIN, XIA SHAOHONG, et al.Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs rations derived from three-component OBS data[J]. Tectonophysics, 2010, 480: 183-197.

[32] LI C, ZHOU Z, LI J, et al., Magnetic zoning and seismic structure of the South China Sea ocean basin[J]. Marine Geophysical Researches, 2008, 29: 223-238.

[33] HAYES D E, NISSEN S, BUHL P, et al. Throughgoing crustal faults along the northern margin of the South China Sea and their role in crustal extension[J]. J Geophys Res, 1995, 100 (B11): 22435-22446.

[34] L?DMANN T, WONG H K. Neotectonic regime on the passive continental margin of the northern South China Sea[J]. Tectonophysics, 1999, 311: 113-138.

[35] 张健, 汪集旸. 南海北部大陆边缘深部地热特征[J]. 科学通报, 2000, 45: 1095-1100.

[36] 施小斌, 丘学林, 夏戡原, 等. 南海热流特征及其构造意义[J]. 热带海洋学报, 2003, 22: 63-73.

[37] SHI X, QIU X, XIA K, et al. Characteristics of surface heat flow in the South China Sea[J]. Journal of Asian Earth Sciences, 22: 265-277.

[38] 卫小冬, 阮爱国, 赵明辉, 等. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面[J]. 地球物理学报, 2011, 54: 3325-3335.
文章导航

/