[1] GAWTHORPE R L, COLELLA A. Tectonic controls on coarse-grained delta depositional system in rift basins[M]//COLELLE A, PRIOR D B. Coarse-grained deltas. International Association of Sedimentologists special publications. Oxford: Blackwell Publishing Ltd, 1990: 113-120.
[2] 李思田. 论沉积盆地分析领域的追踪与创新[J]. 沉积学报, 1992, 12(3): 10-15.
[3] 陈守建, 李荣社, 计文化, 等. 昆仑造山带晚泥盆世沉积特征及构造古地理环境[J]. 大地构造与成矿学, 2007, 31(1): 44-51.
[4] CARTWRIGHT J, HUUSE M. 3D seismic technology: the geological ‘Hubble’ [J]. Basin Research, 2005, 17(1): 1-20.
[5] 程日辉, 游海涛. 关于构造?地层分析及其油气勘探中的应用[J]. 世界地质, 2001, 20(2): 142-148.
[6] JACKSON J A, LEEDER M R. Drainage systems and the development of normal faults: an example from Pleasant Valley, Nevada[J]. Journal of Structural Geology, 1994, 16: 1041-1059.
[7] GAWTHORPE R L, SHARP I, UNDERHILL J R, et al. Linked sequence stratigraphic and structural evolution of propagation normal faults[J]. Geology, 1997, 25(9): 795-798.
[8] GUPTA S, COWIE P A, DAWERS N H, et al. A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution[J]. Geology, 1998, 26: 595-598.
[9] SHARP I R, GAWTHORPE R L, UNDERHILL J R, et al. Fault-propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez Rift, Sinai, Egypt[J]. Geological Society of America Bulletin, 2000, 112: 1877-1899.
[10] COWIE P A, GUPTA S, DAWERS N H. Implications of fault array evolution for synrift stratigraphy: insights from a numerical fault growth model[J]. Basin Research, 2000, 12: 241-261.
[11] DAWERS N H, UNDERHILL J R. The role of fault interaction and linkage in controlling synrift stratigraphic sequences; Late Jurassic, Statfjord East area, northern North Sea[J]. AAPG Bulletin, 2000, 84: 45-64.
[12] PEACOCK D C P, SANDERSON D J. Displacement, segment linkage and relay ramps in normal fault zones[J]. Journal of Structural Geology, 1991, 13(6): 721-733.
[13] GUPTA A, SCHOLZ C H. A model of normal fault interaction based on observation and theory[J]. Journal of Structural Geology, 2000, 22: 865-879.
[14] MARCHAL D, GUIRAUD M, RIVES T. Geometric and morphologic evolution of normal fault planes and traces from 2D to 4D data[J]. Journal of Structural Geology, 2003, 25(1): 135-158.
[15] GAWTHORPE R L, LEEDER M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12: 195-218.
[16] RAVN?S R, STEEL R. Architecture of marine rift-basin successions[J]. AAPG Bulletin, 1998, 82: 110-146.
[17] 张翠梅, 刘晓峰, 苏明. 南堡凹陷老爷庙地区东营组构造-沉积分析[J]. 地球科学: 中国地质大学学报, 2009, 34(5): 829-834.
[18] KHALIL S M, MCCLAY K R. Structural control on syn-rift sedimentation, northwestern Red Sea margin, Egypt[J]. Marine and Petroleum Geology, 2009, 26(6): 1108-1034.
[19] ROBERT S, JACKSON J. Active normal faulting in central Greece: an overview[M]//ROBERTS A M, YIELDING G, FREEMAN B. The geometry of normal faults. Special Publication. London: Geological Society, 1991, 56: 125-142.
[20] ELIET P P, GAWTHORPE R L. Drainage development and sediment supply within rifts, examples from the Sperchioes basin, central Greece [J]. Journal of the Geological Society, London, 1995, 152: 883-893.
[21] COLLIER R, LEEDER M, JACKSON J. Quaternary drainage development, sedimentary fluxes and extensional tectonics in Greece [M]//LEWIN J, MACKLIN M, WOODWARD J. Mediterranean quaternary river environments. Rotterdam: Balkena, 1995: 31-44.
[22] ALEXANDER J, LEEDER M R. Active tectonic control on alluvial architecture[M]//ETHRIDGE F G, FLORES R M, HARVEY M D. Recent Developments in Fluvial Sedimentology. Society of Economic Paleontologists and Mineralogists Special Publications. Tulsa: SEPM, 1987, 39: 243-252.
[23] MAYNARD J R. 2006. Fluvial response to active extension: evidence from 3D seismic data from the Frio Formation (Oligo-Miocene) of the Texas Gulf of Mexico Coast, USA[J]. Sedimentology, 53: 515-536.
[24] PEAKALL J, LEEDER M, BEST J, et al. River response to lateral ground tilting: a synthesis and some implications for the modelling of alluvial architecture in extensional basins[J]. Basin Research, 2000, 12: 413-424.
[25] OUCHI S. Response of alluvial rivers to slow active tectonics movement[J]. Geological Society of American Bulletin, 1985, 96: 504-515.
[26] SCHUMM S A. Sinuosity of alluvial channels on the Great Plains[J]. Geological Society of America Bulletin, 1963, 74: 1089-1100.
[27] SCHUMM S A, KHAN H R. Experimental study of channel patterns[J]. Geological Society of America Bulletin, 1972, 83: 1755-1770.
[28] VANDEN BERG J H. Prediction of alluvial channel pattern of perennial rivers[J]. Geomorphology, 1995, 12: 259-279.
[29] DEPTUCK M E, STEFFENS G S, BARTON M, et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea[J]. Marine and Petroleum Geology, 2003, 20: 649-676.
[30] SAMUEL A, KNELLER B, RASLAN S, et al. Prolific deep-marine slope channels of the Nile Delta, Egypt[J]. AAPG Bulletin, 2003, 87(4): 541-560.
[31] GUPTA S. Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin[J]. Geology, 1997, 25: 11-14.
[32] M?LLER K, TALLING P J. Geomorphic evidence for tear faults accommodating lateral propagation of an active fault-bend fold, Wheeler Ridge, California[J]. Journal of Structural Geology, 1997, 19: 397-411.
[33] GHASSEMI M R. Drainage evolution in response to fold growth in the hanging-wall of the Khazar fault, north-eastern Alborz, Iran[J]. Basin Research, 2005, 17: 425-436.
[34] DART C J, COLLIER R E L, GAWTHORP R L, et al. Sequence stratigraphy of Pliocene-Quaternary syn-rift Gilbert type deltas, northern Peloponnesos, Greece[J]. Marine and Petroleum Geology, 1994, 11: 545-560.
[35] HARDY S, DART C J, WALTHAM D. Computer modelling of the influence of tectonics on sequence architecture of coarse-grained fan deltas[J]. Marine and Petroleum Geology, 1994, 11: 561-574.
[36] YOUNG M J, GAWTHORPE R L, SHARP I R. Sedimentology and sequence stratigraphy of a transfer zone coarse-grained delta, Miocene Suez Rift, Egypt[J]. Sedimentology, 2000, 47: 1081-1104.
[37] GUPTA S, UNDERHILL J R, SHARP I R, et al. Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt[J]. Basin Research, 1999, 11: 167-189.
[38] PATTON T L. Numerical models of growth-sediment development above an active monocline[J]. Basin Research, 2004, 16: 25-39.
[39] CASAS-SAINZ A M, SOTO-MAR?NB R, GONZ?LEZA ?, et al. Folded onlap geometries: implications for recognition of syn-sedimentary folds[J]. Journal of Structural Geology, 2005, 27: 1644-1657.
[40] 林畅松, 潘元林, 肖建新, 等. “构造坡折带”——断陷盆地层序分析和油气预测的重要概念[J]. 地球科学: 中国地质大学学报, 2000, 25(3): 260-266.
[41] 任建业, 陆永潮, 张青林. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制[J]. 地球科学: 中国地质大学学报, 2004, 29(5): 596-602.
[42] 侯艳平, 朱德丰, 任延广, 等. 贝尔凹陷构造演化及其对沉积和油气的控制作用[J]. 大地构造与成矿学, 2008, 32(3): 300-307.
[43] 陈发景, 贾庆素, 张洪年. 传递带及其在砂体发育中的作用[J]. 石油与天然气地质. 2004, 25(2): 144-148.
[44] 王家豪, 王华, 肖敦清, 等. 伸展构造体系中传递带的控砂作用——储层预测的新思路[J]. 石油与天然气地质, 2008, 29(1): 19-25.
[45] 解习农, 任建业, 焦养泉, 等. 断陷盆地构造作用与层序样式[J]. 地质论评, 1996, 42(3): 239-244.
[46] 陶晓风, 刘登忠, 朱利东. 陆相盆地沉积作用与构造作用的关系[J]. 沉积学报, 2001, 19(3): 410-414.
[47] 林畅松, 刘景彦, 张英志, 等. 构造活动盆地的层序地层与构造地层分析——以中国中、新生代构造活动湖盆分析为例[J]. 地学前缘, 2005, 12(4): 365-374.
[48] GARCIA F G, FERNANDEZ J, VISERAS C, et al. Architecture and sedimentary facies evolution in a delta stack controlled by fault growth (Betic Cordillera, southern Spain, late Tortonian)[J]. Sedimentary Geology, 2006, 185: 79-92.
[49] VARBAN B L, PLINT A G. Sequence stacking patterns in the Western Canada foredeep: influence of tectonics, sediment loading and eustasy on deposition of the Upper Cretaceous Kaskapau and Cardium formation[J]. Sedimentology, 2008, 55: 395-421.
[50] SUN Z, ZHOU D, ZENG Z, et al. Dynamic analysis of Yinggehai basin through analogue modeling[J]. Journal of China University of Geosciences, 2000, 11(1): 79-83.
[51] SUPPE J, CHOU G T, HOOK S C. Rates of folding and faulting determined from growth strata[M]//MCCLAY K R. Thrust Tectonics. London: Chapman and Hall, 1992: 105-121.
[52] POBLET J, MCCLAY K, STORTI F, et al. Geometries of syntectonic sediments associated with single-layer detachment folds [J]. Journal of Structural Geology, 1997, 19(3-4): 369-381.
[53] STORTI F, POBLET J. Growth stratal architectures associated to decollement folds and fault-propagation folds, inferences on fold kinematics[J]. Tectonophysics, 1997, 282: 353-373.
[54] 胡宗全. 层序地层研究的新思路——构造-层序地层研究[J]. 现代地质, 2004, 18(4): 549-554.
[55] ZHANG CUIMEI, LIU XIAOFENG, REN JIANYE. Tectonic-hydrocarbon accumulation analysis of Laoyemiao region in Nanpu depression, Bohaiwan basin[J]. Acta Geologica Sinica (English edition), 2009, 83(5): 802-813.
[56] YOUNG M J, GAWTHORPE R L, HARDY S. Growth and linkage of a segmented normal fault zone; the Late Jurassic Murchison-Statfjord North Fault, Northern North Sea[J]. Journal of Structural Geology, 2001, 23: 1933-1952.