海洋地质学

“构造–沉积分析”及其在沉积盆地中的应用

  • 张翠梅 ,
  • 刘晓峰 ,
  • 任建业 ,
  • 苏明
展开
  • 1.中国科学院边缘海地质重点实验室, 南海海洋研究所, 广东 广州 510301;2. 中国地质大学(武汉)构造与油气资源教育部重点实验室, 湖北 武汉 430074;3. 中国科学院可再生能源与天然气水合物重点实验室, 广州能源研究所, 广东 广州 510640
张翠梅(1981—), 女, 河南省焦作市人, 助理研究员, 从事含油气盆地构造-沉积分析研究. E-mail: cmzhang@scsio.ac.cn

收稿日期: 2011-09-02

  修回日期: 2011-12-23

  网络出版日期: 2012-09-11

基金资助

国家自然科学基金青年科学基金项目(41106055); 中国科学院南海海洋研究所青年人才领域前沿项目(SQ201010); 海底科学重点实验室开放基金项目(KLSG1101)

Principle of the “tectono-sedimentary analysis” and its application in sedimentary basins

  • ZHANG Cui-Mei ,
  • LIU Xiao-Feng ,
  • LIN Jian-Ye ,
  • SU Meng
Expand
  • 1. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, Wuhan 430074, China; 3. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2011-09-02

  Revised date: 2011-12-23

  Online published: 2012-09-11

摘要

构造?沉积分析是基于高分辨率三维地震资料来精细刻画同沉积构造活动与沉积作用之间的动态演化过程、 探讨构造与沉积作用间相互关系的一种分析思路。与构造地层学相比, 构造?沉积分析更强调三维地震处理和解释技术的应用, 突出构造活动与沉积过程、沉积充填的动态响应。作者分别从同沉积构造的精细解剖、构造对沉积过程的控制和构造与沉积充填的响应等3个方面展示了近年来构造?沉积分析的新思想和新进展。结合实例重点介绍了生长地层法、粒度分析法、地震处理和解释技术等手段在构造?沉积分析中的应用, 指出构造?沉积分析方法在构造过程与沉积产物复杂性研究方面将得到进一步的应用和深化。

本文引用格式

张翠梅 , 刘晓峰 , 任建业 , 苏明 . “构造–沉积分析”及其在沉积盆地中的应用[J]. 热带海洋学报, 2012 , 31(3) : 128 -136 . DOI: 10.11978/j.issn.1009-5470.2012.03.017

Abstract

The tectono-sedimentary analysis uses 3D seismic data to study dynamic controls of synsedimentary tectonics on sedimentation evolution. It aims to construct the relationship between tectonics and sedimentation. Compared with tectonostratigraphy, the tectono-sedimentary analysis emphasizes application of 3D seismic technique, and tectonic dynamic controls on both sedimentary processes and sedimentary filling. This study provides new thoughts and developments of the tectono-sedimentary analysis in the following aspects: 1) tectonic analysis; 2) tectonic controls on sedimentary processes; 3) response relationship between tectonics and sedimentary filling. The analysis of growth strata, grain size and 3D seismic technique are the three key methods used for the tectono-sedimentary analysis, which will have further application and deepening in the complex research of tectonics processes and sedimentary products in future.

参考文献

[1] GAWTHORPE R L, COLELLA A. Tectonic controls on coarse-grained delta depositional system in rift basins[M]//COLELLE A, PRIOR D B. Coarse-grained deltas. International Association of Sedimentologists special publications. Oxford: Blackwell Publishing Ltd, 1990: 113-120.

[2] 李思田. 论沉积盆地分析领域的追踪与创新[J]. 沉积学报, 1992, 12(3): 10-15.

[3] 陈守建, 李荣社, 计文化, 等. 昆仑造山带晚泥盆世沉积特征及构造古地理环境[J]. 大地构造与成矿学, 2007, 31(1): 44-51.

[4] CARTWRIGHT J, HUUSE M. 3D seismic technology: the geological ‘Hubble’ [J]. Basin Research, 2005, 17(1): 1-20.

[5] 程日辉, 游海涛. 关于构造?地层分析及其油气勘探中的应用[J]. 世界地质, 2001, 20(2): 142-148.

[6] JACKSON J A, LEEDER M R. Drainage systems and the development of normal faults: an example from Pleasant Valley, Nevada[J]. Journal of Structural Geology, 1994, 16: 1041-1059.

[7] GAWTHORPE R L, SHARP I, UNDERHILL J R, et al. Linked sequence stratigraphic and structural evolution of propagation normal faults[J]. Geology, 1997, 25(9): 795-798.

[8] GUPTA S, COWIE P A, DAWERS N H, et al. A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution[J]. Geology, 1998, 26: 595-598.

[9] SHARP I R, GAWTHORPE R L, UNDERHILL J R, et al. Fault-propagation folding in extensional settings: Examples of structural style and synrift sedimentary response from the Suez Rift, Sinai, Egypt[J]. Geological Society of America Bulletin, 2000, 112: 1877-1899.

[10] COWIE P A, GUPTA S, DAWERS N H. Implications of fault array evolution for synrift stratigraphy: insights from a numerical fault growth model[J]. Basin Research, 2000, 12: 241-261.

[11] DAWERS N H, UNDERHILL J R. The role of fault interaction and linkage in controlling synrift stratigraphic sequences; Late Jurassic, Statfjord East area, northern North Sea[J]. AAPG Bulletin, 2000, 84: 45-64.

[12] PEACOCK D C P, SANDERSON D J. Displacement, segment linkage and relay ramps in normal fault zones[J]. Journal of Structural Geology, 1991, 13(6): 721-733.

[13] GUPTA A, SCHOLZ C H. A model of normal fault interaction based on observation and theory[J]. Journal of Structural Geology, 2000, 22: 865-879.

[14] MARCHAL D, GUIRAUD M, RIVES T. Geometric and morphologic evolution of normal fault planes and traces from 2D to 4D data[J]. Journal of Structural Geology, 2003, 25(1): 135-158.

[15] GAWTHORPE R L, LEEDER M R. Tectono-sedimentary evolution of active extensional basins[J]. Basin Research, 2000, 12: 195-218.

[16] RAVN?S R, STEEL R. Architecture of marine rift-basin successions[J]. AAPG Bulletin, 1998, 82: 110-146.

[17] 张翠梅, 刘晓峰, 苏明. 南堡凹陷老爷庙地区东营组构造-沉积分析[J]. 地球科学: 中国地质大学学报, 2009, 34(5): 829-834.

[18] KHALIL S M, MCCLAY K R. Structural control on syn-rift sedimentation, northwestern Red Sea margin, Egypt[J]. Marine and Petroleum Geology, 2009, 26(6): 1108-1034.

[19] ROBERT S, JACKSON J. Active normal faulting in central Greece: an overview[M]//ROBERTS A M, YIELDING G, FREEMAN B. The geometry of normal faults. Special Publication. London: Geological Society, 1991, 56: 125-142.

[20] ELIET P P, GAWTHORPE R L. Drainage development and sediment supply within rifts, examples from the Sperchioes basin, central Greece [J]. Journal of the Geological Society, London, 1995, 152: 883-893.

[21] COLLIER R, LEEDER M, JACKSON J. Quaternary drainage development, sedimentary fluxes and extensional tectonics in Greece [M]//LEWIN J, MACKLIN M, WOODWARD J. Mediterranean quaternary river environments. Rotterdam: Balkena, 1995: 31-44.

[22] ALEXANDER J, LEEDER M R. Active tectonic control on alluvial architecture[M]//ETHRIDGE F G, FLORES R M, HARVEY M D. Recent Developments in Fluvial Sedimentology. Society of Economic Paleontologists and Mineralogists Special Publications. Tulsa: SEPM, 1987, 39: 243-252.

[23] MAYNARD J R. 2006. Fluvial response to active extension: evidence from 3D seismic data from the Frio Formation (Oligo-Miocene) of the Texas Gulf of Mexico Coast, USA[J]. Sedimentology, 53: 515-536.

[24] PEAKALL J, LEEDER M, BEST J, et al. River response to lateral ground tilting: a synthesis and some implications for the modelling of alluvial architecture in extensional basins[J]. Basin Research, 2000, 12: 413-424.

[25] OUCHI S. Response of alluvial rivers to slow active tectonics movement[J]. Geological Society of American Bulletin, 1985, 96: 504-515.

[26] SCHUMM S A. Sinuosity of alluvial channels on the Great Plains[J]. Geological Society of America Bulletin, 1963, 74: 1089-1100.

[27] SCHUMM S A, KHAN H R. Experimental study of channel patterns[J]. Geological Society of America Bulletin, 1972, 83: 1755-1770.

[28] VANDEN BERG J H. Prediction of alluvial channel pattern of perennial rivers[J]. Geomorphology, 1995, 12: 259-279.

[29] DEPTUCK M E, STEFFENS G S, BARTON M, et al. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea[J]. Marine and Petroleum Geology, 2003, 20: 649-676.

[30] SAMUEL A, KNELLER B, RASLAN S, et al. Prolific deep-marine slope channels of the Nile Delta, Egypt[J]. AAPG Bulletin, 2003, 87(4): 541-560.

[31] GUPTA S. Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin[J]. Geology, 1997, 25: 11-14.

[32] M?LLER K, TALLING P J. Geomorphic evidence for tear faults accommodating lateral propagation of an active fault-bend fold, Wheeler Ridge, California[J]. Journal of Structural Geology, 1997, 19: 397-411.

[33] GHASSEMI M R. Drainage evolution in response to fold growth in the hanging-wall of the Khazar fault, north-eastern Alborz, Iran[J]. Basin Research, 2005, 17: 425-436.

[34] DART C J, COLLIER R E L, GAWTHORP R L, et al. Sequence stratigraphy of Pliocene-Quaternary syn-rift Gilbert type deltas, northern Peloponnesos, Greece[J]. Marine and Petroleum Geology, 1994, 11: 545-560.

[35] HARDY S, DART C J, WALTHAM D. Computer modelling of the influence of tectonics on sequence architecture of coarse-grained fan deltas[J]. Marine and Petroleum Geology, 1994, 11: 561-574.

[36] YOUNG M J, GAWTHORPE R L, SHARP I R. Sedimentology and sequence stratigraphy of a transfer zone coarse-grained delta, Miocene Suez Rift, Egypt[J]. Sedimentology, 2000, 47: 1081-1104.

[37] GUPTA S, UNDERHILL J R, SHARP I R, et al. Role of fault interactions in controlling synrift sediment dispersal patterns: Miocene, Abu Alaqa Group, Suez Rift, Sinai, Egypt[J]. Basin Research, 1999, 11: 167-189.

[38] PATTON T L. Numerical models of growth-sediment development above an active monocline[J]. Basin Research, 2004, 16: 25-39.

[39] CASAS-SAINZ A M, SOTO-MAR?NB R, GONZ?LEZA ?, et al. Folded onlap geometries: implications for recognition of syn-sedimentary folds[J]. Journal of Structural Geology, 2005, 27: 1644-1657.

[40] 林畅松, 潘元林, 肖建新, 等. “构造坡折带”——断陷盆地层序分析和油气预测的重要概念[J]. 地球科学: 中国地质大学学报, 2000, 25(3): 260-266.

[41] 任建业, 陆永潮, 张青林. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制[J]. 地球科学: 中国地质大学学报, 2004, 29(5): 596-602.

[42] 侯艳平, 朱德丰, 任延广, 等. 贝尔凹陷构造演化及其对沉积和油气的控制作用[J]. 大地构造与成矿学, 2008, 32(3): 300-307.

[43] 陈发景, 贾庆素, 张洪年. 传递带及其在砂体发育中的作用[J]. 石油与天然气地质. 2004, 25(2): 144-148.

[44] 王家豪, 王华, 肖敦清, 等. 伸展构造体系中传递带的控砂作用——储层预测的新思路[J]. 石油与天然气地质, 2008, 29(1): 19-25.

[45] 解习农, 任建业, 焦养泉, 等. 断陷盆地构造作用与层序样式[J]. 地质论评, 1996, 42(3): 239-244.

[46] 陶晓风, 刘登忠, 朱利东. 陆相盆地沉积作用与构造作用的关系[J]. 沉积学报, 2001, 19(3): 410-414.

[47] 林畅松, 刘景彦, 张英志, 等. 构造活动盆地的层序地层与构造地层分析——以中国中、新生代构造活动湖盆分析为例[J]. 地学前缘, 2005, 12(4): 365-374.

[48] GARCIA F G, FERNANDEZ J, VISERAS C, et al. Architecture and sedimentary facies evolution in a delta stack controlled by fault growth (Betic Cordillera, southern Spain, late Tortonian)[J]. Sedimentary Geology, 2006, 185: 79-92.

[49] VARBAN B L, PLINT A G. Sequence stacking patterns in the Western Canada foredeep: influence of tectonics, sediment loading and eustasy on deposition of the Upper Cretaceous Kaskapau and Cardium formation[J]. Sedimentology, 2008, 55: 395-421.

[50] SUN Z, ZHOU D, ZENG Z, et al. Dynamic analysis of Yinggehai basin through analogue modeling[J]. Journal of China University of Geosciences, 2000, 11(1): 79-83.

[51] SUPPE J, CHOU G T, HOOK S C. Rates of folding and faulting determined from growth strata[M]//MCCLAY K R. Thrust Tectonics. London: Chapman and Hall, 1992: 105-121.

[52] POBLET J, MCCLAY K, STORTI F, et al. Geometries of syntectonic sediments associated with single-layer detachment folds [J]. Journal of Structural Geology, 1997, 19(3-4): 369-381.

[53] STORTI F, POBLET J. Growth stratal architectures associated to decollement folds and fault-propagation folds, inferences on fold kinematics[J]. Tectonophysics, 1997, 282: 353-373.

[54] 胡宗全. 层序地层研究的新思路——构造-层序地层研究[J]. 现代地质, 2004, 18(4): 549-554.

[55] ZHANG CUIMEI, LIU XIAOFENG, REN JIANYE. Tectonic-hydrocarbon accumulation analysis of Laoyemiao region in Nanpu depression, Bohaiwan basin[J]. Acta Geologica Sinica (English edition), 2009, 83(5): 802-813.

[56] YOUNG M J, GAWTHORPE R L, HARDY S. Growth and linkage of a segmented normal fault zone; the Late Jurassic Murchison-Statfjord North Fault, Northern North Sea[J]. Journal of Structural Geology, 2001, 23: 1933-1952.
文章导航

/