海洋地质学

软弱地质体对反转构造变形制约作用的物理模拟及其应用*

  • 徐子英 ,
  • 孙珍 ,
  • 周蒂 ,
  • 张云帆 ,
  • 孙龙涛 ,
  • 赵中贤
展开
  • 1.中国科学院边缘海地质重点实验室, 中国科学院南海海洋研究所, 广东 广州 510301;2. 中国科学院研究生院, 北京 100049
徐子英(1981—), 女, 江西省上饶市人, 在读博士研究生, 主要从事构造分析与油气系统模拟研究。E-mail: ziyingx06@scsio.ac.cn
通信作者: 孙珍(1971—)。E-mail: zhensun@scsio.ac.cn
* 论文撰写过程中得到了中国科学院南海海洋研究所施小斌研究员、许鹤华副研究员和杨小秋博士的许多有益建议; 审稿专家对本文提出了建设性的评审和修改意见,

收稿日期: 2011-04-27

  修回日期: 2011-05-26

  网络出版日期: 2012-09-11

基金资助

国家重点基础研究发展计划(“973”计划)项目(2009CB219401、2007CB41170405); 国家自然科学基金项目(40876026、40806022)

Discussion on the influence of weakness body on inversion structure deformation through analogue modeling and its application

  • XU Zi-Yang ,
  • SUN Zhen ,
  • ZHOU Di ,
  • ZHANG Yun-Fan ,
  • SUN Long-Chao ,
  • DIAO Zhong-Xian
Expand
  • 1. CAS Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2011-04-27

  Revised date: 2011-05-26

  Online published: 2012-09-11

摘要

深水盆地的构造变形表明, 大陆边缘上常存在与刚性地质体相对应的软弱地质体, 它们不仅加强了裂陷期的沉降变形, 而且加强了挤压反转期的褶皱隆升。为了揭示软弱地质体对构造变形的影响, 作者利用物理模拟方法设置了4组实验, 基于模拟结果讨论了琼东南盆地西南部反转构造的发育机制。实验对比分析发现, 无论哪种应力场下反转变形都更容易在软弱区集中, 软弱区所处构造位置及其所受应力性质对反转构造发育起着重要的控制作用。通过模拟结果与实际构造对比分析, 认为琼东南盆地西南部构造反转发育主要受斜向挤压应力和软弱体的共同影响, 推测其挤压应力来源于盆地西北部, 可能与印支地块的旋转挤出作用有关。

本文引用格式

徐子英 , 孙珍 , 周蒂 , 张云帆 , 孙龙涛 , 赵中贤 . 软弱地质体对反转构造变形制约作用的物理模拟及其应用*[J]. 热带海洋学报, 2012 , 31(3) : 144 -154 . DOI: 10.11978/j.issn.1009-5470.2012.03.019

Abstract

Deep-sea basin structural deformation indicated that the exist of weakness body in continental margin not only make the sedimentation deformation stronger in rift stage but also make the uplift-fold stronger in inversion stage. In order to investigate the impact of weakness body on structural deformation, we carried out four sets of analogue modeling experiments. Based on the modeling results, we discussed the impact of weakness body on inversion structure deformation in the southwest of the Qiongdongnan Basin. The modeling experiments show that no matter in extension stage or in compression stage, the inversion structural deformation first appears and propagates in weakness zone, the location and the stress direction of weakness body play an important role in the deformation of inversion structure. Based on comparison of modeling results with the actual structures, it is concluded that the deformation of inversion structure in southwest of the Qiongdongnan Basin is mainly influenced by the existence of weakness body and oblique compression; the oblique compression tectonic stress may come from the northwest of the basin and keep its relationship with the revolved Indochina Block by inference.

参考文献

[1] KOOPMAN A, SPEKSNIJDER A, HORSFIELD W T. Sandbox model studies of inversion tectonics[J]. Tectonophysics, 1987, 137: 379–388.

[2] MCCLAY K R. Analogue models of inversion tectonics[C]//COOPER M A, WILLIAMS G D. Inversion tectonics. London: Geological Society, 1989, Special Publication 44: 41–59.

[3] MCCLAY K R, SCOTT A D. Experimental models of hanging wall deformation in ramp-flat listric extensional fault systems[J]. Tectonophysics, 1991, 188: 85–96.

[4] MCCLAY K R, BUCHANAN P G. Thrust faults in inverted extensional basins[M]//MCCLAY K R. Thrust tectonics. London: Chapman and Hall, 1992: 93–104.

[5] MCCLAY K R, WHITE M J. Analogue modeling of orthogonal and oblique rifting[J]. Marine and Petroleum Geology, 1995, 12(2): 137–151.

[6] MCCLAY K R. The geometries and kinematics of inverted fault systems: A review of analogue model studies[C] //BUCHANAN J G B, BUCHANAN P G. Basin inversion. London: Geological Society, 1995, Special Publication 88: 97–118.

[7] BUCHANAN P G, MCCLAY K R . Sandbox experiments of inverted listric and planar fault systems[J]. Tectonophysics, 1991, 188: 97–115.

[8] BUCHANAN P G, MCCLAY K R . Experiments on basin inversion above reactivated domino faults[J]. Marine and Petroleum Geology, 1992, 9: 486–500.

[9] YAMADA Y, MCCLAY K R. Application of geometric models to inverted listric fault systems in sandbox experiments. paper 1: 2D hanging wall deformation and section restoration[J]. Journal of Structural Geology, 2003, 25: 1551–1560.

[10] PANIEN M, SCHREURS G,PFIFFNER A. Sandbox experiments on basin inversion: testing the influence of basin orientation and basin fill[J]. Journal of Structural Geology, 2005, 27: 433–445.

[11] 周建勋. 半地堑反转构造的砂箱实验模拟.地球物理学进展[J]. 1999, 14(2): 47–52.

[12] 周建勋, 魏春光, 朱战军. 基底收缩对挤压构造变形特征影响-来自砂箱实验的启示[J]. 地学前缘, 2002, 9(4): 377–382.

[13] 周建勋, 徐凤银, 朱战军. 从反转构造的砂箱模型看柴达木早-中侏罗世盆地的构造性质[J].地质科学, 2002, 37(4): 430–435.

[14] 周建勋, 徐凤银, 朱战军. 柴达木盆地北缘新生代构造变形的物理模拟[J]. 地球学报, 2003, 24(4): 399–304.

[15] 周建勋, 郎建, 刘重庆. 韧性基底层黏度对褶皱-冲断带变形特征的影响[J]. 西北大学学报: 自然科学版, 2009, 39(3): 392–398.

[16] 马宝军, 漆家福, 于福生, 等. 施力方式对半地堑反转构造变形特征影响的物理模拟实验研究[J].大地构造与成矿学, 2006, 30(2): 174–179.

[17] 马宝军, 漆家福, 牛树银, 等. 统一应力场中基底断裂对盖层复杂断块变形的影响——来自砂箱实验的启示[J]. 地学前缘, 2009, 16(4): 105–116.

[18] 解国爱, 张庆龙, 王良书, 等. 松辽盆地南缘十屋断陷构造物理模拟研究[J]. 地质通报, 2009, 28(4): 420–430.

[19] 孙珍, 孙龙涛, 周蒂, 等.南海岩石圈破裂方式与扩张过程的三维物理模拟[J]. 地球科学: 中国地质大学学报, 2009, 34(3): 435–447.

[20] SUN Z, ZHONG Z H, KEEP M, et al. 3D analogue modeling of the South China Sea: A discussion on breakup pattern[J]. Journal of Asian Earth Sciences, 2009, 34: 544–556.

[21] 孙珍, 钟志洪, 周蒂, 等. 南海的发育机制研究: 相似模拟证据[J]. 中国科学: D辑 地球科学, 2006, 36(9): 797–810.

[22] SUN Z, ZHOU D, ZHONG Z H, et al. Research on the dynamics of the South China Sea opening: Evidence from analogue modeling[J]. Science in China (Series D): Earth Science, 2006, 49(3): 258–271.

[23] BRUN J P. Narrow rifts versus wide rifts: Inferences for the mechanics of rifting from laboratory experiments[J]. Philosophical Transactions of the Royal Society A, 1999, 357: 695–712.

[24] MONTANARI D, CORTI G, SANI F, et al. Experiment investigation on granite emplacement during shortening[J]. Tectonophysics, 2010, 484(1–4): 147–155.

[25] KEEP M, KEEP M. Physical modeling of deformation in the Tasman orogenic zone[J]. Tectonophysics, 2003, 375(1/4): 37-47.

[26] CRUDEN A R, KOYI H,SCHMELING H. Diapiric basal entrainment of mafic into felsic magma[J]. Earth and Planetary Science Letters, 1995, 131: 321–340.

[27] CORTI G,BONINI M,CONTICELLI S, et al. Analogue modeling of continental extension: A review focused on the relations between the patterns of deformation and the presence of magma[J]. Earth–Science Reviews, 2003, 63: 169–247.

[28] CORTI G,BONINI M,SOKOUTIS D, et al. Continental rift architecture and patterns of magma migration: A dynamic analysis based on centrifuge models[J]. Tectonics, 2004, 10: 1-20.

[29] CORTI G, BONINI M,INNOCENTI F, et al. Centrifuge models simulating magma emplacement during oblique rifting [J]. Journal of Geodynamics, 2001, 31(5): 557–576.

[30] CORTI G,MANETTI P. Asymmetric rifts due to asymmetric Mohos: An experimental approach[J]. Earth and Planetary Science Letters, 2006, 245: 315–329.

[31] CLAIIOT J P, GRIGNE C, GEOFFROY L, et al. Development of volcanic passive margins: Two-dimensional laboratory models[J]. Tectonics, 2001, 20(1): 148-149.

[32] 孙珍, 钟志洪, 周蒂. 莺歌海盆地构造演化与强烈沉降机制的分析和模拟[J].地球科学: 中国地质大学学报, 2007, 32(3): 347–356.

[33] ZHOU J X, ZHOU J S. Mechanisms of Cenozoic deformation in the Bohai Basin, Northeast China: physical modeling and discussions[J]. Science in China (Series D): Earth Science, 2006, 49(10): 1053–1069.

[34] TRON V, NRUN J P. Experiments on oblique rifting in brittle-ductile systems[J]. Tectonophysics, 1991, 188: 71–84.

[35] DAVY P, COBBOLD P R. Experiment on shortening of a 4-layer model of the continental lithosphere[J]. Tectonophysics, 1991, 188: 1–25.

[36] BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia[J]. J Geophys Res, 1993, 98.

[37] 谢文彦, 孙珍, 张一伟, 等. 南海北部陆缘盆地新生代反转构造动力学与成藏分析[J].地球科学:中国地质大学学报, 2007, 32(增刊): 32–40.

[38] 谢文彦, 张一伟, 孙珍, 等. 琼东南盆地新生代发育机制的模拟研究[J].地学前缘, 2008,15(2): 232-241.

[39] 孙珍, 孙龙涛, 张云帆, 等. 华光凹陷构造演化及其对油气成藏的影响[R]. 广州: 中国科学院南海海洋研究所边缘海地质重点实验室, 2007: 56-68.
文章导航

/