海洋地质学

南海北部冷泉碳酸盐岩的矿物、岩石及地球化学研究进展*

  • 佟宏鹏 ,
  • 冯东 ,
  • 陈多福
展开
  • 1.中国科学院广州地球化学研究所边缘海地质重点实验室, 广东 广州 510640; 2.中国科学院南海海洋研究所边缘海地质重点实验室, 广东 广州 510301; 3. 中国科学院大学, 北京 100049
佟宏鹏(1985—), 女, 辽宁省锦州市人, 博士研究生, 主要从事冷泉碳酸盐岩研究。

收稿日期: 2011-08-11

  修回日期: 2011-09-22

  网络出版日期: 2013-02-06

基金资助

国家自然科学基金(91028012, 91228206); GIGCAS 135项目 (Y234021001); 广东省科技计划项目(2011A080403021)

Progresses on petrology, mineralogy and geochemistry of cold seep carbonates in the northern South China Sea

  • TONG Hong-peng ,
  • FENG Dong ,
  • CHEN Duo-fu
Expand
  • 1. Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2011-08-11

  Revised date: 2011-09-22

  Online published: 2013-02-06

摘要

南海北部陆坡海底冷泉碳酸盐岩广泛发育, 已从30个站位采集到冷泉碳酸盐岩。南海北部冷泉碳酸盐岩呈结壳状、结核状、烟囱状、角砾状、块状等, 主要自生矿物有文石和方解石, 部分站位样品有白云石和铁白云石及少量菱铁矿。冷泉碳酸盐岩具有较轻的碳同位素组成特征, 西沙海槽海域、神狐海域、东沙西南海域、东沙东北海域和台西南海域碳酸盐岩的δ13CPDB分别为?29.6‰— ?13.3‰(平均?21.0‰), ?40.4‰— ?38.7‰(平均?39.8‰), ?36.1‰— ?18.2‰(平均?26.8‰), ?61.4‰— ?32.8‰(平均?49.3‰)和?57.6‰— ?35.7‰(平均?48.3‰), 显示了较大的变化范围, 反映了复杂的碳源。冷泉碳酸盐岩的δ18OPDB为0.4‰—7.5‰, 同样显示了较大的变化范围, 反映可能与富集18O的地层水和/或天然气水合物分解水有关。神狐海域及东沙东北部九龙甲烷礁海域冷泉碳酸盐岩的稀土元素页岩标准化配分模式既具有Ce正异常, 同时也有Ce负异常特征, 说明冷泉碳酸盐岩形成过程中可能存在氧化还原条件的变化。南海北部陆坡不同海域, 甚至同一站位的冷泉碳酸盐岩均表现出不同的矿物、同位素及元素组成特征, 可能反映了冷泉渗漏流体和天然气水合物稳定状态的差异。

本文引用格式

佟宏鹏 , 冯东 , 陈多福 . 南海北部冷泉碳酸盐岩的矿物、岩石及地球化学研究进展*[J]. 热带海洋学报, 2012 , 31(5) : 45 -56 . DOI: 10.11978/j.issn.1009-5470.2012.05.007

Abstract

Cold seep carbonates are known to be commonly developed in the northern South China Sea. Authigenic carbonate samples were collected from thirty sites in the region. These carbonates consist of concretions, nodules, chimneys, fragments or massive blocks. Mineralogically, the carbonates are dominated by aragonite and Mg calcite. However, a certain amount of dolomites are present in some samples. The carbon isotopic compositions (δ13CPDB) of the carbonates range from ?29.6‰ to ?13.3‰ in the Xisha samples, from ?40.4‰ to ?38.7‰ in the Shenhu samples, from ?36.1‰ to ?18.2‰ in the southwestern Dongsha samples, from ?61.4‰ to ?32.8‰ in the northeastern Dongsha samples, and from ?57.6‰ to ?35.7‰ in the southwestern Taiwan samples. The variable δ13C values indicate complex carbon sources that include 13C-depleted biogenic and thermogenic methane. A similarly large variability in δ18OPDB values (0.4‰ to 7.5‰) demonstrates 18 O-enriched fluids possibly associated with dissociation of locally abundant gas hydrate. The shale-normalized REE (rare earth element) patterns of the carbonates from Jiulong methane reef in northeastern Dongsha and from Shenhu show both positive and negative Cerium anomalies, suggesting that the redox conditions changed significantly. Samples from different regions and from the same sites show variations in mineralogical, isotopic and elemental features, indicating that different regions, even the same sites, developed various seep fluids and gas hydrate stability.

参考文献

[1] ROBERTS H H, AHARON P. Hydrocarbon-derived carbonate buildups of the Northern Gulf-of-Mexico continental slope: a review of submersible investigations [J]. Geo-mar Lett, 1994, 14(2-3): 135?148.
[2] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1): 34?40.
[3] AHARON P. Geology and biology of modern and ancient submarine hydrocarbon seeps and vents: An introduction [J]. Geo-mar Lett, 1994, 14(2-3): 69?73.
[4] PAULL C K, HECKER B, COMMEAU R, et al. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa [J]. Science, 1984, 226: 965?967.
[5] SUESS E, CARSON B, RITGER S D, et al. Biological communities at vent sites along the subduction zone off Oregon [C] // JONES M L. The Hydrothermal vents of the Eastern Pacific: An overview. Vienna, Va.: INFAX Corp, 1985: 475?484.
[6] KULM L D, SUESS E, MOORE J C, et al. Oregon subduction zone: venting, fauna, and carbonates [J]. Science, 1986, 231: 561?566.
[7] LE PICHON X, FOURNIER M, JOLIVET L. Topography, shortening and extrusion in the India-Eurasia collision [J]. Tectonics, 1992, 11: 1085-1098.
[8] LE PICHON X, IIYAMA T, CHAMLEY H, et al. Nankai Trough and the fossil Shikoku Ridge: results of Box 6 Kaiko survey [J]. Earth Planet Sc Lett, 1987, 83: 186-198.
[9] BOHRMANN G, GREINERT J, SUESS E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability [J]. Geology, 1998, 26(7): 647-650.
[10] GEINERT J, BOHRMANN G, SUESS E. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution and origin of authigenic lithologies [C] // PAULL C K, DILLON W P. Natural Gas Hydrates: Occurrence, Distribution and Detection. Washington, D C: AGU Geophys Monogr, 2001: 99-113.
[11] CAMPBELL K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeogr Palaeocl, 2006, 232(2-4): 362-407.
[12] 黄永样, SUESS E, 吴能友, 等. 南海北部陆坡甲烷和天然气水合物地质——中德合作SO-177航次成果专报[M]. 北京: 地质出版社, 2008: 1-197.
[13] MANSOUR A S, SASSEN R. Mineralogical and stable isotopic characterization of authigenic carbonate from a hydrocarbon seep site, Gulf of Mexico slope: Possible relation to crude oil degradation [J]. Mar Geol, 2011, 281(1-4): 59-69.
[14] PECKMANN J, THIEL V. Carbon cycling at ancient methane-seeps [J]. Chem Geol, 2004, 205(3-4): 443-467.
[15] CAMPBELL, K A, FARMER J D, MARAIS D D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and paleoenvironments [J]. Geofluids, 2002, 2(2): 63-94.
[16] PECKMANN J, GISCHLER E, OSCHMANN W, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea [J]. Mar Geol, 2001, 177(1-2): 129-150.
[17] TRYON M D, BROWN K M. Complex flow patterns through Hydrate Ridge and their impact on seep biota [J]. Geophys Res Lett, 2001, 28(14): 2863-2866.
[18] WHITE S N, DUNK R M, PELTZER E T, et al. In-situ Raman analyses of deep-sea hydrothermal and cold seep systems (Gorda Ridge and Hydrate Ridge) [J]. Geochem Geophy Geosy, 2006, 7: Q05023
[19] GIESKES J, BOHRMANN G, SUESS E. A study of the chemistry of pore fluids and authigenic carbonates in methane seep environments: Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin [J]. Chem Geol, 2005, 220(3-4): 329-345.
[20] TEICHERT B M A, EISENHAUER A, BOHRMANN G, et al. U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: Recorders of fluid flow variations [J]. Geochim Cosmochim Ac, 2003, 67(20): 3845-3857.
[21] WATANABE Y, NAKAI S, HIRUTA A, et al. U-Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea [J]. Earth Planet Sc Lett, 2008, 272(1-2): 89-96.
[22] FENG DONG, ROBERTS H H, CHENG HAI, et al. U/Th dating of cold-seep carbonates: An initial comparison [J]. Deep-Sea Res Pt II-Topical Studies in Oceanography, 2010, 57(21-23): 2055-2060.
[23] HACKWORTH M S. Carbonate records of submarine hydrocarbon venting: northern Gulf of Mexico [D]. Baton Rouge: Louisiana State University and Agricultural and Mechanical College, 2005: 125-250.
[24] FENG DONG, CHEN DUOFU, PECKMANN J. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps [J]. Terra Nova, 2009, 21(1): 49-56.
[25] BIRGEL D, FENG DONG, ROBERTS H H, et al. Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico [J]. Chem Geol, 2011, 285(1-4): 82-96.
[26] FENG DONG, CHEN DUOFU, PECKMANN J, et al. Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism [J]. Mar Petrol Geol, 2010, 27(4): 748-756.
[27] FENG DONG, CHEN DUOFU, ROBERTS H H. Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico [J]. Mar Petrol Geol, 2009, 26(7): 1190-1198.
[28] FENG DONG, CHEN DUOFU, QI LIANG, et al. Petrographic and geochemical characterization of seep carbonate from Alaminos Canyon, Gulf of Mexico [J]. Chin Sci Bull, 2008, 53(11): 1716-1724.
[29] 冯东, 陈多福. 黑海西北部冷泉碳酸盐岩的沉积岩石学特征及氧化还原条件的稀土元素地球化学示踪[J]. 现代地质, 2008, 22(3): 390-396.
[30] 管红香, 陈多福, 宋之光. 冷泉渗漏区海底微生物作用及生物标志化合物 [J]. 海洋地质与第四纪地质, 2007, 27(5): 75-83.
[31] BOETIUS A, RAVENSCHLAG K, SCHUBERT C, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407: 623-626.
[32] ORPHAN V J, HOUSE C H, HINRICHS K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 7663-7668.
[33] KNITTEL K, LO SEKANN T, BOETIUS A, et al. Diversity and distribution of methanotrophic archaea at cold seeps [J]. Appl Environ Microb, 2005, 71: 467-479.
[34] VALENTINE D L, REEBURGH W S. New perspectives on anaerobic methane oxidation [J]. Environ Microb, 2000, 2(5): 477-484.
[35] LANOIL B D, SASSEN R, LA DUC M T, et al. Bacteria and Archaea physically associated with Gulf of Mexico gas hydrates [J]. Appl and Environ Microb, 2001, 67(11): 5143-5153.
[36] HAN XIQIU, SUESS E, HUANG YONGYANG, et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea [J]. Mar Geol, 2008, 249(3-4): 243-256.
[37] 陈多福, 黄永样, 冯东, 等. 南海北部冷泉碳酸盐岩和石化微生物细菌及地质意义[J]. 矿物岩石地球化学通报, 2005, 24(3): 185-189.
[38] CHEN DUOFU, HUANG YONGYANG, YUAN XUNLAI, et al. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea [J]. Mar Petrol Geol, 2005, 22(5): 613-621.
[39] HINRICHS K U, SUMMONS R E, ORPHAN V, et al. Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments [J]. Org Geochem, 2000, 31: 1685-1701.
[40] 杨涛, 蒋少涌, 葛璐, 等. 南海北部陆坡西沙海槽XS-01站位沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义[J]. 第四纪研究, 2006, 26(03): 442-448.
[41] 邓希光, 吴庐山, 付少英, 等. 南海北部天然气水合物研究进展[J]. 海洋学研究, 2008, 26(2): 67-74.
[42] 蒲晓强, 陶小晚, 张会领. 南海北部陆坡天然气水合物存在的地球物理和地球化学特征[J]. 天然气地球科学, 2009, 20(4): 620-626.
[43] 陈忠, 黄奇瑜, 颜文, 等. 南海西沙海槽的碳酸盐结壳及其对甲烷冷泉活动的指示意义[J]. 热带海洋学报, 2007, 26(2): 26-33.
[44] 杨克红, 初凤友, 赵建如, 等. 南海北部冷泉碳酸盐岩矿物微形貌及其意义探讨[J]. 矿物学报, 2009, 29(3): 345-352.
[45] 陈忠, 颜文, 陈木宏, 等. 南海北部大陆坡冷泉碳酸盐结核的发现:海底天然气渗漏活动的新证据[J]. 科学通报, 2006, 51(9): 1065-1072.
[46] 陈忠, 颜文, 陈木宏, 等. 南海北部大陆坡冷泉碳酸盐结核的发现:天然气水合物新证据[J]. 热带海洋学报, 2006, 25(1): 83.
[47] 苏新, 陈芳, 陆红锋, 等. 南海北部深海甲烷冷泉自生碳酸盐岩显微结构特征与流体活动关系初探[J]. 现代地质, 2008, 22(3): 376-381.
[48] LIN S L, LIM Y C, LIU C S, et al. Formosa ridge, a cold seep with densely populated chemosynthetic community in the passive margin, Southwest of Taiwan [J]. Geochim Cosmochim Ac, 2007, 71(15)( Suppl): 582.
[49] HUANG CHI-YUE, CHIEN CHIH-WEI, ZHAO MEIXUN, et al. Geological study of active cold seeps in the syn-collision accretionary prism kaoping slope off SW Taiwan [J]. Terr Atmos Ocean Sci. 2006, 17(4): 679-702.
[50] 吴能友, 张海啟, 杨胜雄, 等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业, 2007, 27(9): 1-7.
[51] GE LU, JIANG SHAOYONG, SWENNEN R, et al. Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry [J]. Mar Geol, 2010, 277(1-4): 21-30.
[52] 陆红锋, 陈芳, 刘坚, 等. 南海北部神狐海区的自生碳酸盐岩烟囱——海底富烃流体活动的记录[J]. 地质论评, 2006, 52(3): 352-357.
[53] 葛璐, 蒋少涌, 杨涛, 等. 南海北部神狐海区冷泉碳酸盐岩的地球化学特征[J]. 矿物学报, 2009, S1: 370.
[54] 葛璐, 蒋少涌, 杨涛, 等. 南海北部神狐海域冷泉碳酸盐烟囱的甘油醚类生物标志化合物及其碳同位素组成[J]. 科学通报, 2011, 56(14): 1124-1131.
[55] 陈忠, 杨华平. 南海东沙西南海域冷泉碳酸盐岩特征及其意义[J]. 现代地质, 2008, 22(3): 382-389.
[56] 杨克红, 初凤友, 赵建如, 等. 南海北部冷泉碳酸盐岩层状结构及其地质意义[J]. 海洋地质与第四纪地质, 2008, 28(5): 11-16.
[57] 陆红锋, 刘坚, 陈芳, 等. 南海台西南区碳酸盐岩矿物学和稳定同位素组成特征——天然气水合物存在的主要证据之一[J]. 地学前缘, 2005, 12(3): 268-276.
[58] 陆红锋, 陈芳, 刘坚, 等. 南海东北部甲烷成因碳酸盐岩的矿物学及同位素组成(英文) [J]. 海洋地质与第四纪地质, 2010, 30(2): 51-59.
[59] 邬黛黛, 吴能友, 叶瑛, 等. 南海北部陆坡九龙甲烷礁冷泉碳酸盐岩沉积岩石学特征[J]. 热带海洋学报, 2009, 28(3): 74-81.
[60] 于晓果, 韩喜球, 李宏亮, 等. 南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成[J]. 海洋学报: 中文版, 2008, 30(3): 77-84.
[61] BIRGEL D, ELVERT M, HAN XIQIU, et al. 13 C-depleted biphytanic diacids as tracers of past anaerobic oxidation of methane [J]. Org Geochem, 2008, 39(1): 152-156.
[62] NAEHR T H, EICHHUBL P, ORPHAN V J, et al., Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study [J]. Deep Sea Res Pt II, 2007, 54: 1268-1291.
[63] WARREN J. Dolomite: occurrence, evolution and economically important associations [J]. Earth-Sci Rev, 2000, 52: 1-81.
[64] LUFF R, WALLMANN K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances [J]. Geochim Cosmochim Ac, 2003, 67: 3403-3421.
[65] ORPHAN VJ, USSLER III, NAEHR W, et al. Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River Basin, offshore California [J]. Chem Geol, 2004, 205: 265-289.
[66] WHITICAR M J, FABER E, and SCHOELL M. Biogenic methane formation in marine and fresh-water environments: CO2 reduction vs. acetate fermentation---Isotope evidence [J]. Geochim Cosmochim Ac, 1986, 50(5): 693-709.
[67] SACKETT W M. Carbon and hydrogen isotope effects during thermo-catalytic production of hydrocarbons in laboratory simulation experiments [J]. Geochim Cosmochim Ac, 1978, 42(6): 571-580.
[68] ALOISI G, PIERRE C, ROUNCHY J M, et al. Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilization [J]. Earth Planet Sc lett, 2000, 184: 321-338.
[69] BIRGEL D, PECKMANN J. Aerobic methanotrophy at ancient marine methane seeps: A synthesis [J]. Org Geochem, 2008, 39: 1659-1667.
文章导航

/