海洋地质学

水合物与湿地对晚第四纪大气甲烷浓度变化影响的模型比较

  • 张辉 ,
  • 阎贫
展开
  • 1. 中国科学院可再生能源与天然气水合物重点实验室, 中国科学院广州能源研究所, 广东 广州 510640; 2. 中国科学院边缘海地质重点实验室, 中国科学院南海海洋研究所, 广东 广州??510301; 3. 中国科学院大学, 北京 100049
张辉(1980—), 男, 山东省泰安市人, 博士, 从事海洋地球物理及天然气水合物研究。

收稿日期: 2010-04-12

  修回日期: 2010-05-31

  网络出版日期: 2013-02-06

基金资助

中国科学院知识创新工程重要方向项目(Kzcx2-yw-228); 国家基金(U0733003, 40876027); 中国科学院可再生能源与天然气水合物重点实验室开放基金(KLREGH0807k9); 中国科学院边缘海地质重点实验室开放基金(MSGL08-19)

Model comparison of the effect of gas hydrates and wetlands on the atmospheric methane concentration variation in late Quaternary

  • ZHANG Hui ,
  • YAN Pin
Expand
  • 1. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3. University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2010-04-12

  Revised date: 2010-05-31

  Online published: 2013-02-06

摘要

对于冰芯记录的古大气甲烷含量的周期变化, 存在普遍接受的湿地假说, 还有近十几年提出的水合物假说。O’Hara建立了一级模型试图辨别湿地和水合物这两种源对气候影响的可能性。模拟结果显示水合物可能是引起大气甲烷变化的主要来源, 而否定了湿地作为最大甲烷源的可能性。对其模型的数学推导和机制的合理性进行了检验, 修正了模型中的错误, 模拟得出与原文不同的观点。结果表明, 海底水合物甲烷含量达到10kg?m-3 (或湿地甲烷含量1600kg?m-3)才能与实际冰芯甲烷记录相吻合。而自然界中还未发现如此高含量的水合物或湿地甲烷资源。但这一结果并不能否定湿地或水合物对气候变化可能造成的巨大影响, 因为模型中以指数衰减模式释放甲烷意味着甲烷源区为封闭系统, 所以需要较大的初始浓度而海底水合物和湿地的演化均为一个开放系统。因此, O'Hara原文的模型和机制能否反映实际情况有待商榷。

关键词: 水合物; 湿地; 冰芯; 甲烷; 模型

本文引用格式

张辉 , 阎贫 . 水合物与湿地对晚第四纪大气甲烷浓度变化影响的模型比较[J]. 热带海洋学报, 2012 , 31(5) : 57 -61 . DOI: 10.11978/j.issn.1009-5470.2012.05.008

Abstract

There exist the widely accepted wetlands hypothesis and a new hydrate gun hypothesis, for the periodic changes of atmospheric methane concentration recorded in the Antarctic and Greenland ice cores. O'Hara tried to identify the probability of methane sources between gas hydrate and wetlands by model simulations with first-order kinetics. The results suggested that it is not wetlands but gas hydrate that may be the major source of the atmospheric CH4. This paper checked the mathematical derivation and the model mechanism, then corrected the model and came up with distinguished new results. The best-fit modified model requires the methane concentration of 10 kg?m-3 for marine gas hydrates or that of 1600 kg?m-3 for wetlands. But no methane source with so high content is found in gas hydrate or wetlands. The results did not eliminate gas hydrate or wetlands as the primary CH4 source, but reflected that the model was a closed system for the CH4 source, which so needs high initial methane concentration. This model mechanism conflicts with the fact that both gas hydrates and wetlands develop as open systems.

参考文献

[1] PETIT J R, JOUZEL J, RAYNAUD D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6735): 429-436.
[2] BROOK E J, SOWERS T, ORCHARDO J. Rapid variations in atmospheric methane concentration during the past 110,000 years [J]. Science, 1996, 273(5278): 1087-1091.
[3] SPAHNI R, CHAPPELLAZ J, STOCKER T F, et al. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores [J]. Science, 2005, 310(5752): 1317-1321.
[4] LOULERGUE L, SCHILT A, SPAHNI R, et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years [J]. Nature, 2008, 453(7193): 383-386.
[5] CHAPPELLAZ J, BLUNIER T, RAYNAUD D, et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 ka [J]. Nature, 1993, 366: 443-445.
[6] KVENVOLDEN K A, LORENSON T D. The global occurrence of natural gas hydrates [M]// PAULL C K, DILLON W P. Natural gas hydrates, occurrence, distribution and detection. Washington D C: AGU, 2001: 3-18.
[7] KENNETT J P, CANNARIATO K G, HENDY I L, et al. Methane hydrates in Quaternary climate change: The clathrate gun hypothesis [M]. Washington D C: AGU, 2003: 216.
[8] BUFFETT B, ARCHER D. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean [J]. Earth Planet Sci Lett, 2004, 227(3-4): 185-199.
[9] HESTER, K C, BREWER P G. Clathrate hydrates in nature [J]. Annu Rev Mar Sci, 2009, 1: 303.
[10] O'HARA K D. A model for late quaternary methane ice core signals: Wetlands versus a shallow marine source [J]. Geophys Res Lett, 2008, 35(2): L02712.
[11] VAGHJIANI G L, RAVISHANKARA A R. New measurement of the rate coefficient for the reaction of OH with methane [J]. Nature, 1991, 350: 406-408.
[12] MATTHEWS E. Wetlands [M]//KHALIL M A K. Atmospheric methane, its role in the environment. New York: Springer, 2000: 202-233.
[13] MILKOV A V, CLAYPOOL G E, LEE Y J, et al. In situ methane concentrations, at Hydrate Ridge, offshore Oregon: New constraints on the global gas hydrate inventory from an active margin [J]. Geology, 2003, 31(10): 833-836.
[14] 卢博, 李赶先, 黄韶健, 等. 中国黄海、东海和南海北部海底浅层沉积物声学物理性质之比较[J]. 海洋技术, 2005, 24(2): 28-33.
[15] DAVIE M K, BUFFETT B A. A numerical model for the formation of gas hydrate below the seafloor [J]. J Geoph Res, 2001, 106(B1): 497-514.
[16] BHATNAGAR G, CHAPMAN W G, DICKENS G R, et al. Generalization of gas hydrate distribution and saturation in marine sediments by scaling of thermodynamic and transport processes [J]. Am J Sci, 2007, 307(6): 861-900.
[17] DENMAN K L, BRASSEUR G, CHIDTHAISONG A, et al. Couplings between changes in the climate system and biogeochemistry [M] // SOLOMON S, QIN D, MANNING M, et al. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge Univ Press, 2007: 499-587.
文章导航

/