海洋物理学

海底天然气渗漏流量声学测量方法及初步实验研究*

  • 龙建军 ,
  • 黄为 ,
  • 邹大鹏 ,
  • 邸鹏飞 ,
  • 吴金萍
展开
  • 1. 广东工业大学机电工程学院, 广东 广州 510006; 2. 中国科学院南海海洋研究所, 广东 广州 510301
龙建军(1960— ), 男, 博士, 副教授, 近年主要从事海洋声学检测技术研究。

收稿日期: 2011-09-20

  修回日期: 2011-11-06

  网络出版日期: 2013-02-06

基金资助

国家自然科学基金项目(40876018, 50575044, 41176034); 中国科学院三亚深海科学与工程研究所知识创新工程领域前沿项目(SIDSSE-201208)

Method of measuring bubble flow from cool seeps on seafloor using acoustic transmission and preliminary experiments

  • LONG Jian-jun ,
  • HUANG Wei ,
  • ZOU Da-peng ,
  • DI Peng-fei ,
  • WU Jin-ping
Expand
  • 1. Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510060, China; 2. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

Received date: 2011-09-20

  Revised date: 2011-11-06

  Online published: 2013-02-06

摘要

测量每年海底渗漏释放到海洋水体及大气中的具有温室效应的甲烷的量具有重要的科学意义。文章提出了测量前调整气泡状态并用透射声波波形-幅度参数测量渗漏气泡流量的新方法。通过空间频谱分析得出声波测量窗口高度小于气泡流每秒上升的距离时, 文章所设计的声波传感系统可以有效地测量气泡流速。根据求解声波方程的Born近似方法得出了气泡直径与测量声波波长的关系, 该关系是确定测量系统结构参数的依据。实验表明, 采用蜂窝芯板为主的结构可把气泡调整为直径小于3mm且空间分布均匀的状态, 气泡流速测量精度可达±2%, 透射声波幅度与截面含气率有近线性关系; 初步验证了气泡流量测量方法的可行性。

本文引用格式

龙建军 , 黄为 , 邹大鹏 , 邸鹏飞 , 吴金萍 . 海底天然气渗漏流量声学测量方法及初步实验研究*[J]. 热带海洋学报, 2012 , 31(5) : 100 -105 . DOI: 10.11978/j.issn.1009-5470.2012.05.015

Abstract

Observations of seabed bubbles of methane, an important greenhouse gas, at a natural marine hydrocarbon seep to evaluate the global methane budget per year is very important. The objective of this paper is to develop a new approach, in which the configuration and distribution of bubbles are adjusted before flow measurement, to measure cold seepage flow on seafloor by the wave form-amplitude parameters of acoustic transmission. After the spectrum analysis we lead to the height of the measurement window through which acoustic wave transmits to the opposite wave transducer is less than the distance which bubbles go up pass per second. And the bubble speed can be effectively measured by using the acoustic sensing system designed under the proposed height of the measurement window in the paper. The relationship between the bubble diameter and the measured acoustic wavelength is obtained under the Born approximation. Diameters of bubbles become smaller than 3 mm after they go through the honeycomb-core board and other structure parts, and the distribution of bubble populations is uniform. Spatial frequency spectrum analysis is applied to establish the relationship between geometry parameters of the piezoelectric transducer and the motion of bubbles, and the measurement accuracy of bubble velocity is expected to ± 2%. The nearly linear relationship between the amplitude of sound transmission and the gas bubble flow has been established through the experiment. It turns out to be an effective method of measuring the bubble flow.

参考文献

[1] CHEN DUOFU, SU ZHEN, CATHLES L M. Types of gas hydrates in marine environments and their thermodynamic -characteristics [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17 (4): 723?737.
[2] JUDD A G, HOVLAND M, DIMITROV L I, et al. The geological methane budget at continental margins and its influence on climate change [J]. Geofliuds, 2002, 2 (2): 109?126.
[3] CABLE J E, BURNETT W C, CHANTON J P, et al. Field Evaluation of Seepage Meters in the Coastal Marine Environment [J]. Estuarine, Coastal and Shelf Science, 1997, 45 (3): 367?375.
[4] ROBERTS H. H. Fluid and gas expulsion on the northern Gulf of Mexico continental slope: Mud-prone to mineral-prone responses[M]// PAULL C K, DILLON W P. Natural Gas Hydrates: Occurrence, Distribution and Detection. New York: American Geophysical Union, 2001: 145?161.
[5] WASHBURN L, JOHNSON C, GOTSCHALK C C, et al. A Gas-Capture Buoy for Measuring Bubbling Gas Flux in Oceans and Lakes [J]. Journal of Atmospheric and Oceanic Technology, 2001, 18 (8): 1411?1420.
[6] GREINERT J, N?TZEL B. Hydroacoustic experiments to establish a method for the determination of bubble fluxes at cold seeps [J]. Geo-Marine Letters, 2004, 24 (2): 75?85.
[7] LEIFER I, BOLES J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment [J]. Marine and Petroleum Geology, 2005, 22 (4): 551?568.
[8] NIKOLOVSKA A, WALDMANN C. Passive acoustic quantification of underwater gas seepage [C]//Proceedings of OCEANS 2006, Boston, MA, 2006. New York: IEEE, Dec. 2007: 1?6.
[9] ROBERTS D A, BRADLEY E S, CHEUNG R, et al. Mapping methane emissions from a marine geological seep source using imaging spectrometry [J]. Remote Sensing of Environment, 2010, 114 (3): 592?606.
[10] DEIMLING J S, GREINERT J, CHAPMAN N R, et al. Acoustic imaging of natural gas seepage in the North Sea: Sensing bubbles controlled by variable currents [J]. Limnology and Oceanography-Methods, 2010, 8: 155-171.
[11] SCHNEIDER VON, DEIMLING J. GasQuant—a hydroacoustic gas bubble monitoring system [R]. Victoria, Canada: University of Victoria, 2007:1?15.
[12] 陈忠, 颜文, 陈木宏, 等. 南海北部大陆坡冷泉碳酸盐结核的发现:天然气水合物新证据 [J]. 热带海洋学报,2006, 25 (1): 83?83.
[13] 徐华宁, 杨胜雄, 郑晓东, 等. 南中国海神狐海域天然气水合物地震识别及分布特征 [J]. 地球物理学报,2010, 53 (7): 1691?1698.
[14] 李灿苹, 刘学伟, 杨丽, 等. 气泡半径和含量对含气泡海水声波速度的影响 [J]. 现代地质,2010, 24 (3): 528 ?533.
[15] KAK A C. Principles of Computerized Tomographic Imaging [M]. New York: IEEE Press, 1999: 212?216.
[16] LEIFER I, DE LEEUW G, KUNZ G, COHEN L H. Calibrating optical bubble size by the displaced-mass method [J]. Chemical Engineering Science, 2003, 58 (23-24): 5211 ?5216.
[17] 钱祖文, 吴端. 气泡幕回声信号的起伏相关 [J]. 声学学报,1998, 23 (6): 505?508.
[18] 徐苓安. 相关流量测量技术 [M]. 天津: 天津大学出版社, 1988: 141?163.
[19] LONG JIANJUN, WU BAIHAI. Positioning Mobile Vehicle by Using Super-Short Baseline with AM Ultrasonic Beacon: ICMTMA 2009: Proceedings of International Conference on Measuring Technology and Mechatronics Automation, April 11-15, 2009 [C]. New Jersey: IEEE Computer Society, 2009, 3: 536?540.
[20] ORFANIDIS S J. Optimum Signal Processing. An Introduction [M]. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996: 150?153.
文章导航

/