海洋水文学

海洋中尺度涡的机械能及其源汇研究*

展开
  • 1. 中国科学院南海海洋研究所热带海洋环境国家重点实验室,广东 广州 510301;2. 中国科学院大学,北京 100049
作者简介: 尚晓东(1962—),男,山西省运城市人,研究员,博士生导师,主要从事海洋湍流与海洋混合研究。E-mail: xdshang@scsio.ac.cn

收稿日期: 2012-04-09

  修回日期: 2013-06-10

  网络出版日期: 2013-06-10

基金资助

基金项目:国家重点基础研究发展计划项目(2011CB403505);国家自然科学基金项目(U1033002、40976010、40976012、10972229)

Review on mechanical energy of ocean mesoscale eddies and associated energy sources and sinks

Expand
  • 1. State Key Laboratory of Tropical Oceanography, Chinese Academy of Sciences, Guangzhou 510301, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-04-09

  Revised date: 2013-06-10

  Online published: 2013-06-10

摘要

由于观测手段的限制,海洋中尺度涡的能量输送及生成与耗散动力过程一直是世界大洋能量循环中悬而未决的一个问题,而中尺度涡在海洋中又广泛存在,它不仅占据海洋表层动能的绝大部分,而且是能量级串中连接大尺度和小尺度的中间环节,在大洋能量传输中扮演着重要的角色。文章以中尺度涡场机械能的大小、分布、源汇为主线,结合作者在这方面的最新研究成果,综述当前对中尺度涡机械能及其源汇的研究进展。

本文引用格式

尚晓东,徐驰,,陈桂英,练树民 . 海洋中尺度涡的机械能及其源汇研究*[J]. 热带海洋学报, 2013 , 32(2) : 24 -36 . DOI: 10.11978/j.issn.1009-5470.2013.02.003

Abstract

The generation, dissipation, transfer and cascade of energy in mesoscale eddy field are important in the world ocean energy budget, because mesoscale eddies are widely found, dominate the ocean kinetic energy, and are involved in energy cascade at different scales. Due to limited observations, however, the energy structure of ocean mesoscale eddies and associated dynamic processes of eddy generation and termination remain unclear. Combining with our new results, this paper reviews the results on the amount, distribution, and sources and sinks of mesoscale eddy energy.

参考文献

[1] CHELTON D B, SCHLAX M G, SAMELSON R M,et al. Global observations of large oceanic eddies[J]. Geophys Res Lett, 2007,34:L15606.

[2] 程旭华),(齐义泉). 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. (海洋科学进展,) 2008,26(4):447-457.

[3] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Prog Oceanogr, 2011,91:167-216.

[4] WUNSCH C. Where do ocean eddy heat fluxes matter? [J]. J Geophys Res, 1999,104(C6):13235-13249.

[5] EARLY J J, SAMELSON R M, CHELTON D B. The evolution and propagation of quasigeostrophic ocean eddies[J]. J Phys Oceanogr, 2011,41:1535-1555.

[6] FLIERL G R. The application of linear quasigeostrophic dynamics to Gulf Stream rings[J]. J Phys Oceanogr, 1977,7:365-379.

[7] MCWILLIAMS J C, FLIERL G R. On the evolution of isolated, nonlinear vortices[J]. J Phys Oceanogr, 1979,9:1155-1182.

[8] NOF D. On the β -induced movement of isolated baroclinic eddies[J]. J Phys Oceanogr, 1981,11:1662-1672.

[9] NOF D. The translation of isolated cold eddies on a sloping bottom[J]. Deep-Sea Res Pt Ⅰ, 1983,30(2):171-182.

[10] NOF D. On the migration of isolated eddies with application to Gulf Stream rings[J]. J Mar Res, 1983,41:399-425.

[11] KILLWORTH P D. On the motion of isolated lenses on a beta-plane[J]. J Phys Oceanogr, 1983,13:368-376.

[12] CUSHMAN-ROISON B, CHASSIGNET E P, TANG BENYANG. Westward motion of mesoscale eddies[J]. J Phys Oceanogr, 1990,20:758-768.

[13] LOZIER M S. Deconstructing the conveyor belt[J]. Science, 2010,328(5985):1507-1511.

[14] DENGLER M, SCHOTT F A, EDEN C,et al. Break-up of the Atlantic deep western boundary current into eddies at 8°S[J]. Nature, 2004,432(7020):1018-1020.

[15] WUNSCH C. Mass and volume transport variability in an eddy-filled ocean[J]. Nat Geosci, 2008,1:165-168.

[16] SOUTELINO R G,DA SILVEIRA I C A, GANGOPADHYAY A,et al. Is the Brazil Current eddy-dominated to the north of 20°S? [J]. Geophys Res Lett, 2011,38:L03607.

[17] ADAMS D K, MCGILLICUDDY D J, ZAMUDIO L,et al. Surface-Generated Mesoscale Eddies Transport Deep-Sea Products from Hydrothermal Vents[J]. Science, 2011,332(6029):580-583.

[18] LOZIER M S. Evidence for large-scale eddy-driven gyres in the North Atlantic[J]. Science, 1997,277(5324):361-364.

[19] HOLLOWAY G. Estimation of oceanic eddy transports from satellite altimetry[J]. Nature, 1986,323:243-244.

[20] STAMMER D. On eddy characteristics, eddy transports, and mean flow properties[J]. J Phys Oceanogr, 1998,28:727-739.

[21] QIU BO, CHEN SHUIMING. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements[J].J Phys Oceanogr, 35(4): 458-473.

[22] VOLKOV D L, LEE T, FU L L. Eddy-induced meridional heat transport in the ocean[J]. Geophys Res Lett, 2008,35:L20601.

[23] SOUZA J M A C, DE BOYER MONTEGUT C, CABANES C,et al. Estimation of the Agulhas ring impacts on meridional heat fluxes and transport using ARGO floats and satellite data[J]. Geophys Res Lett, 2011,38:L21602.

[24] BENITEZ-NELSON C R, BIDIGARE R R, DICKEY T D,et al. Mesoscale eddies drive increased silica export in the subtropical Pacific ocean[J]. Science, 2007,316:1017-1021.

[25] MCDOWELL S E, ROSSBY H T,Mediterranean water: an intense mesoscale eddy off the Bahamas[J]. Science, 1978, 202(4372): 1085-1087.

[26] SIEGEL D A, PETERSON P, MCGILLICUDDY JR D J,et al. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea[J]. Geophys Res Lett, 2011,38:L13608.

[27] FALKOWSKI P G, ZIEMANN D, KOLBER Z,et al. Role of eddy pumping in enhancing primary production in the ocean[J]. Nature, 1991,352:55-58.

[28] WILLIAMS R G, FOLLOWS M J. Oceanography: Eddies make ocean deserts bloom[J]. Nature, 1998,394:228-229.

[29] MCGILLICUDDY JR D J, ROBINSON A R, SIEGEL D A,et al. Influence of mesoscale eddies on new production in the Sargasso Sea[J]. Nature, 1998,394:263-266.

[30] SWEENEY E N, MCGILLICUDDY D J, BUESSELER K O. Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea measured at the Bermuda Atlantic Time-series Study (BATS)[J]. Deep-Sea Res Pt Ⅱ, 2003,50:3017-3039.

[31] NENCIOLI F, KUWAHARA V S, DICKEY T D,et al. Physical dynamics and biological implications of a mesoscale eddy in the lee of Hawaii: Cyclone Opal observations during E-Flux Ⅲ[J]. Deep-Sea Res Pt Ⅱ, 2008,55:1252-1274.

[32] WILLIAMS R G. Oceanography: Ocean eddies and plankton blooms[J]. Nat Geosci, 2011,4:739-740.

[33] CHELTON D B, GAUBE P, SCHLAX M G,et al. The influence of nonlinear mesoscale eddies on near-surface chlorophyll[J]. Science, 2011,334:328-332.

[34] NOF D, SIMON L M. Laboratory experiments on the merging of nonlinear anticyclonic eddies[J]. J Phys Oceanogr, 1987,17:343-357.

[35] DAVEY M K, KILLWORTH P D. Flows produced by discrete sources of buoyancy[J]. J Phys Oceanogr, 1989,19:1279-1290.

[36] RODRIGUEZ-MARROYO R, VIUDEZ A, RUIZ S. Vortex merger in oceanic tripoles[J]. J Phys Oceanogr, 2011,41:1239-1251.

[37] HOLLAND W R. The role of mesoscale eddies in the general circulation of the ocean — numerical experiments using a wind-driven quasi-geostrophic model[J]. J Phys Oceanogr, 1978,8:363-392.

[38] CRONIN M. Eddy-mean flow interaction in the Gulf Stream at 68 W. Part Ⅱ: Eddy forcing on the time-mean[J]. J Phys Oceanogr, 1996,26:2132-2151.

[39] HOLLAND C L, MITCHUM G T. Propagation of big island eddies[J]. J Geophys Res, 2001,106(C1):935-944.

[40] GREATBATCH R J, ZHAI XIAOMING. Influence of assimilated eddies on the large-scale circulation in a model of the northwest Atlantic Ocean[J]. Geophys Res Lett, 2006,33:L02614.

[41] GREATBATCH R J, ZHAI XIAOMING, CLAUS M,et al. Transport driven by eddy momentum fluxes in the Gulf Stream Extension region[J]. Geophys Res Lett, 2010,37:L24401.

[42] WATERMAN S, JAYNE S R. Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study[J]. J Phys Oceanogr, 2011,41:682-707.

[43] WATERMAN S, HOGG N G, JAYNE S R. Eddy-mean flow interaction in the Kuroshio extension region[J]. J Phys Oceanogr, 2011,41:1182-1208.

[44] SMALL R, DESZOEKE S, XIE SHANGPING,et al. Air-sea interaction over ocean fronts and eddies[J]. Dyn Atmos Oceans, 2008,45:274-319.

[45] NOF D, JIA YINGLAI, CHASSIGNET E,et al. Fast wind-induced migration of Leddies in the South China Sea[J]. J Phys Oceanogr, 2011,41(9):1683-1693.

[46] CHOW C H, LIU QINYU. Eddy effects on sea surface temperature and sea surface wind in the continental slope region of the northern South China Sea[J]. Geophys Res Lett, 2012,39:L02601.

[47] POLZIN K L. Mesoscale eddy-internal wave coupling. Part Ⅰ: Symmetry, wave capture, and results from the mid-ocean dynamics experiment[J]. J Phys Oceanogr, 2008,38:2556-2574.

[48] POLZIN K L. Mesoscale eddy-internal wave coupling. Part Ⅱ: Energetics and results from polymode[J]. J Phys Oceanogr, 2010,40:789-801.

[49] ZHAI XIAOMING, GREATBATCH R J, ZHAO JUN. Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model[J]. Geophys Res Lett, 2005,32:L18602.

[50] ELIPOT S, LUMPKIN R, PRIETO G. Modification of inertial oscillations by the mesoscale eddy field[J]. J Geophys Res, 2010,115:C09010.

[51] DANIOUX E, KLEIN P, HECHT M W,et al. Emergence of wind-driven near-inertial waves in the deep ocean triggered by small-scale eddy vorticity structures[J]. J Phys Oceanogr, 2011,41(7):1297-1307.

[52] SAENKO O A, ZHAI XIAOMING, MERRYFIELD W,et al. The combined effect of tidally and eddy driven diapycnal mixing on the large-scale circulation[J]. J Phys Oceanogr, 2012,42:526-538.

[53] ITOH S, SUGIMOTO T. Numerical experiments on the movement of a warm-core ring with the bottom slope of a western boundary[J]. J Geophys Res, 2001,106(26):26851-26862.

[54] FROLOV S A, SUTYRIN G G, ROWE G D,et al. Loop current eddy interaction with the western boundary in the Gulf of Mexico[J]. J Phys Oceanogr, 2004,34:2223-2237.

[55] WEI JUN, WANG DONG-PING. A three-dimensional model study of warm core ring interaction with continental shelf and slope[J]. Cont Shelf Res, 2009,29(13):1635-1642.

[56] GILL A E, GREEN J S A, SIMMONS A J. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies[J]. Deep-Sea Res, 1974,21:499-528.

[57] HUANG RUIXIN Ocean circulation: wind-driven and thermohaline processes[M]. New York: Cambridge University Press, 2010: 806.

[58] CUSHMAN-ROISON B,BECKERS J Introduction to geophysical fluid dynamics[M]. San Diego: Academic Press, 2011: 875.

[59] WUNSCH C. The past and future ocean circulation from a contemporary perspective[G]// SCHMITTNER A, CHIANG J C, HEMMING S R. Ocean Circulation: mechanisms and impacts—past and future changes of meridional overturning. Geophys Monogr Ser. Washington D C: AGU, 2007,173:53-74.

[60] FERRARI R, WUNSCH C,Ocean circulation kinetic energy: Reservoirs, sources, and sinks[J]. Annu Rev Fluid Mech, 2009, 41: 253-282.

[61] WYRTKI K, MAGAARD L, HAGER J. Eddy energy in the oceans[J]. J Geophys Res, 1976,81(15):2641-2646.

[62] RICHARDSON P L. Eddy kinetic energy in the North Atlantic from surface drifters[J]. J Geophys Res, 1983,88(C7):4355-4367.

[63] CHENEY R E, MARSH J G, BECKLEY B D. Glogal mesoscale variability from collinear tracks of SEASAT altimeter data[J]. J Geophys Res, 1983,88:4343-4354.

[64] ZLOTNICKI V, FU L L, PATZERT W. Seasonal variability in global sea level observed with Geosat altimetry[J]. J Geophys Res, 1989,94:17959-17969.

[65] SHUM C K, WERNER R A, SANDWELL D T,et al. Variations of global mesoscale eddy energy observed from Geosat[J]. J Geophys Res, 1990,95(C10):17865-17876.

[66] LE TRAON P Y, ROUQUET M C, BOISSIER C. Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data[J]. J Geophys Res, 1990,95:20267-20285.

[67] BECKMANN A, BONING C W, BRUGGE B,et al. On the generation and role of eddy variability in the central North-Atlantic ocean[J]. J Geophys Res, 1994,99:20381-20391.

[68] WILKIN J L, MORROW R A. Eddy kinetic-energy and momentum flux in the Southern Ocean: comparison of a global eddy-resolving model with altimeter, drifter, and current-meter data[J]. J Geophys Res, 1994,99:7903-7916.

[69] STAMMER D. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements[J]. J Phys Oceanogr, 1997,27:1743-1769.

[70] DUCET N, LE TRAON P Y, REVERDIN G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2[J]. J Geophys Res, 2000,105:19477-19498.

[71] FU L L, STAMMER D, LEBEN R R,et al. Improved spatial resolution of ocean surface topography from the T/P-Jason-1 altimeter mission[J]. Eos Trans, 2003,84(26):241-248.

[72] LE TRAON P Y, DIBARBOURE G. An illustration of the unique contribution of the TOPEX/Poseidon - Jason-1 tandem mission to mesoscale variability studies[J]. Mar Geod, 2004,27:3-13.

[73] PASCUAL A, FAUGERE Y, LARNICOL G,et al. Improved description of the ocean mesoscale variability by combining four satellite altimeters[J]. Geophys Res Lett, 2006,33:L02611.

[74] XU CHI, SHANG XIAODONG, HUANG RUI XIN. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data[J]. Ocean Dynam, 2011,61(4):525-541.

[75] STAMMER D, WUNSCH C. Temporal changes in eddy energy of the oceans[J]. Deep-Sea Res Pt Ⅱ, 1999,46:77-108.

[76] SCHARFFENBERG M G, STAMMER D. Seasonal variations of the large-scale geostrophic flow field and eddy kinetic energy inferred from the TOPEX/Poseidon and Jason-1 tandem mission data[J]. J Geophys Res, 2010,115:C02008.

[77] QIU BO. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/POSEIDON observations and theory[J]. J Phys Oceanogr, 1999,29:2471-2486.

[78] QIU BO, CHEN SHUIMING. Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field[J]. J Phys Oceanogr, 2010,40:213-225.

[79] QIU BO, CHEN SHUIMING. Seasonal modulations in the eddy field of the South Paci?c Ocean[J]. J Phys Oceanogr, 2004,34:1515-1527.

[80] QIU BO, CHEN SHUIMING, KESSLER W S. Source of the 70-day mesoscale eddy variability in the Coral Sea and the North Fiji Basin[J]. J Phys Oceanogr, 2009,39:404-420.

[81] JIA FAN, WU LIXIN, QIU BO. Seasonal modulation of eddy kinetic energy and its formation mechanism in the southeast Indian Ocean[J]. J Phys Oceanogr, 2011,41:657-665.

[82] JIA FAN, WU LIXIN, LAN JIAN,et al. Interannual modulation of eddy kinetic energy in the southeast Indian Ocean by Southern Annular Mode[J]. J Geophys Res, 2011,116:C02029.

[83] STAMMER D, BONING C, DIETERICH C. The role of variable wind forcing in generating eddy energy in the North Atlantic[J]. Progr Oceanogr, 2001,48(2-3):289-311.

[84] VOLKOV D L, FU L L. Interannual variability of the Azores Current strength and eddy energy in relation to atmospheric forcing[J]. J Geophys Res, 2011,116:C11011.

[85] EDEN C, BONING C. Sources of eddy kinetic energy in the Labrador Sea[J]. J Phys Oceanogr, 2002,32:3346-3363.

[86] QIU BO, CHEN SHUIMING. Variability of the Kuroshio Extension jet, recirculation gyre and mesoscale eddies on decadal timescales[J]. J Phys Oceanogr, 2005,35:2090-2103.

[87] ZHAI XIAOMING, GREATBATCH R J, KOHLMANN J. On the seasonal variability of eddy kinetic energy in the Gulf Stream region[J]. Geophys Res Lett, 2008,35:L24609.

[88] CHAUDHURI A H, GANGOPADHYAY A, BISAGNI J J. Interannual variability of Gulf Stream warm-core rings in response to the North Atlantic Oscillation[J]. Cont Shelf Res, 2009,29(7):856-869.

[89] CHEN GENGXIN, HOU YIJUN, CHU XIAOQING,et al. The variability of eddy kinetic energy in the South China Sea deduced from satellite altimeter data[J]. Chinese J Ocean Limn, 2009,27(4):943-954.

[90] CHENG XUHUA, QI YIQUAN. Variations of eddy kinetic energy in the South China Sea[J]. J Oceanogr, 2010,66(1):85-94.

[91] WANG HUI, WANG DAKUI, LIU GUIMEI,et al. Seasonal variation of eddy kinetic energy in the South China Sea[J]. Acta Oceanol Sin, 2012,31(1):1-15.

[92] STAMMER D, WUNSCH C, UEYOSHI K. Temporal changes in ocean eddy transports[J]. J Phys Oceanogr, 2006,36:543-550.

[93] YOSHIDA S, QIU BO, HACKER P. Low-frequency eddy modulations in the Hawaiian Lee Countercurrent: Observations and connection to the Pacific Decadal Oscillation[J]. J Geophys Res, 2011,116:C12009.

[94] FENG YANG, WANG WEI, HUANG RUIXIN. Meso-scale available gravitational potential energy in the world oceans[J]. Acta Oceanol Sin, 2006,25:1-13.

[95] WUNSCH C, FERRARI R. Vertical mixing, energy and the general circulation of the oceans[J]. Annu Rev Fluid Mech, 2004,36:281-314.

[96] WANG WEI, HUANG RUIXIN. Wind energy input to the surface waves[J]. J Phys Oceanogr, 2004,34:1276-1280.

[97] DICKEY J, BENDER P, FALLER J,et al. Lunar laser ranging: A continuing legacy of the Apollo program[J]. Science, 1994,265:482-490.

[98] EGBERT G D, RAY R D. Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry[J]. Geophys Res Lett, 2003,30:1907.

[99] FRANKIGOUL C, MULLER P. Quasi-geostrophic response of an infinite beta-plane ocean to stochastic forcing by the atmosphere[J]. J Phys Oceanogr, 1979,9:104-127.

100 PULLEN J, DOYLE J D, MAY P,et al. Monsoon surges trigger oceanic eddy formation and propagation in the lee of the Philippine Islands[J]. Geophys Res Lett, 2008,35:L07604.

101 YOSHIDA S, QIU BO, HACKER P. Wind generated eddy characteristics in the lee of the island of Hawaii[J]. J Geophys Res, 2010,115:C03019.

102 JIA YANLI, CALIL P H R, CHASSIGNET E P,et al. Generation of mesoscale eddies in the lee of the Hawaiian Islands[J]. J Geophys Res, 2011,116:C11009.

103 LAMB H. Hydrodynamics[M]. 6th ed. Mineola, N Y: Dover Publications, 1945:738.

104 PIEDELEU M, SANGRA P, SANCHEZ-VIDAL A,et al. An observational study of oceanic eddy generation mechanisms by tall deep-water islands (Gran Canaria)[J]. Geophys Res Lett, 2009,36:L14605.

105 ZAMUDIO L, HURLBURT H E, METZGER E J,et al. Tropical wave-induced oceanic eddies at Cabo Corrientes and the María Islands, Mexico[J]. J Geophys Res, 2007,112:C05048.

106 UBELMANN C, FU L L. Cyclonic eddies formed at the Pacific tropical instability wave fronts[J]. J Geophys Res, 2011,116:C12021.

107 LEE H J, CHAO S Y, FAN K L,et al. Tide-induced eddies and upwelling in a semi-enclosed basin: Nan Wan[J]. Estuar Coast Shelf S, 1999,49(6):775-787.

108 FERRARI R, WUNSCH C. The distribution of eddy kinetic and potential energies in the global ocean[J]. Tellus Ser A, 2010,60:92-108.

109 SMITH K. The geography of linear baroclinic instability in Earth’s oceans[J]. J Mar Res, 2007,65:655-683.

110 KILLWORTH P D, BLUNDELL J R. Planetary wave response to surface forcing and instability in the presence of mean flow and topography[J]. J Phys Oceanogr, 2007,37:1297-1320.

111 HUANG RUIXIN, WANG WEI. Gravitational potential energy sinks in the oceans, near-boundary processes and their parameterization[C]//MULLER P, HENDERSON D. Proceedings of the 13th 'Aha Huliko'a Hawaiian Winter Workshop. U Hawaii, 2003:239-247.

112 WUNSCH C. The work done by the wind on the oceanic general circulation[J]. J Phys Oceanogr, 1998,28(11):2332-2340.

113 HUANG RIN XIN, WANG WEI, LIU LINGLING. Decadal variability of wind-energy input to the world ocean[J]. Deep-Sea Res Pt Ⅱ, 2006,53(1-2):31-41.

114 SCOTT R, XU YONGSHENG. An update on the wind power input to the surface geostrophic flow of the World Ocean[J]. Deep-Sea Res Pt Ⅰ, 2009,56(3):295-304.

115 PEDLOSKY J. Geophysical fluid dynamics[M]. 2nd ed. New York: Springer-Verlag, 1987:710.

116 MARSHALL D P, NAVEIRA GARABATO A C. A conjecture on the role of bottom-enhanced diapycnal mixing in the parameterization of geostrophic eddies[J]. J Phys Oceanogr, 2008,38:1607-1613.

117 SCOTT R, WANG FAMING. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry[J]. J Phys Oceanogr, 2005,35:1650-1666.

118 QIU BO, SCOTT R, CHEN SHUIMING. Length scales of eddy generation and nonlinear evolution of the seasonally-modulated South Pacific Subtropical Countercurrent[J]. J Phys Oceanogr, 2008,38:1515-1528.

119 SCOTT R B, ARBIC B K. Spectral energy fluxes in geostrophic turbulence: Implications for ocean energetics[J]. J Phys Oceanogr, 2007,37:673-688.

120 FU L L, KEFFER T, NIILER P,et al. Observations of mesoscale variability in the western North Atlantic: A comparative study[J]. J Mar Res, 1982,40:809-848.

121 GILLE S, YALE Mm SANDWELL D. Global correlation of mesoscale ocean variability with seafloor roughness from satellite altimetry[J]. Geophys Res Lett, 2000,27:1251-1254.

122 ARBIC B, FLIERL G. Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies[J]. J Phys Oceanogr, 2004,34:2257-2273.

123 SEN A, SCOTT R, ARBIC B. Global energy dissipation rate of deep-ocean low-frequency flows by quadratic bottom boundary layer drag: Computations from current-meter data[J]. Geophys Res Lett, 2008,35:L09606.

124 ARBIC B K, SHRIVER J F, HOGAN P J,et al. Estimates of bottom flows and bottom boundary layer dissipation of the oceanic general circulation from global high-resolution models[J]. J Geophys Res, 2009,114:C02024.

125 WRIGHT C J, SCOTT R B, ARBIC B K, FURNIVAL D F. Bottom dissipation of subinertial currents at the Atlantic zonal boundaries [J]. J Geophys Res, 2012,117:C03049.doi:10.1029/2011JC007702

126 CHENEY R E, RICHARDSON P L. Observed decay of a cyclonic Gulf Stream ring[J]. Deep Sea Res & Oceanogr Abstr, 1976,23(2):143-155.

127 NIKURASHIN M, FERRARI R. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Theory[J]. J Phys Oceanogr, 2010,40:1055-1074.

128 NIKURASHIN M, FERRARI R. Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the southern ocean[J]. J Phys Oceanogr, 2010,40:2025-2042.

129 JING ZHAO, WU LIXIN, LI LEI,et al. Turbulent diapycnal mixing in the subtropical northwestern Pacific: Spatial- seasonal variations and role of eddies[J]. J Geophys Res, 2011,116:C10028.

130 NIKURASHIN M, FERRARI R. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean[J]. Geophys Res Lett, 2011,38:L08610.

131 SCOTT R B, GOFF J A, NAVEIRA GARABATO A C,et al. Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography[J]. J Geophys Res, 2011,116:C09029.

132 ZHAI XIAOMING, GREATBATCH R J. Wind work in a model of the northwest Atlantic Ocean[J]. Geophys Res Lett, 2007,34(4):L04606.

133 MOLEMAKER M J, MCWILLIAMS J C, YAVNEH I. Baroclinic Instability and Loss of Balance[J]. J Phys Oceanogr, 2005,35(9):1505-1517.

134 CAPET X, MCWILLIAMS J C, MOLEMAKER M J,et al. Mesoscale to submesoscale transition in the California current system. Part Ⅰ: Flow structure, eddy flux, and observational tests[J]. J Phys Oceanogr, 2008,38:29-43.

135 THOMAS L N, TAYLOR J R. Reduction of the usable wind-work on the general circulation by forced symmetric instability[J]. Geophys Res Lett, 2010,(37):L18606.

136 TAYLOR J R, FERRARI R. Buoyancy and wind-driven convection at mixed layer density fronts[J]. J Phys Oceanogr, 2010,(40):1222-1242.

137 ZHAI XIAOMING, JOHNSON H L, MARSHALL D P. Significant sink of ocean-eddy energy near western boundaries[J]. Nature Geosci, 2010,3(9):608-612.

138 LIU QINYU, ARATA K, SU JILAN,Recent progress in studies of the South China Sea circulation[J]. J Oceanogr, 2008, 64: 753-762.

139 XIU PENG, CHAI FEI, SHI LEI,et al. A census of eddy activities in the South China Sea during 1993-2007[J]. J Geophys Res, 2010,115:C03012.

140 CHEN GENGXIN, HOU YIJUN, CHU XIAOQING. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. J Geophys Res, 2011,116:C06018.

141 WANG LIPING, KOBLINSKY C J, HOWDEN S. Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data[J]. Deep-Sea Res Ⅰ, 2000,47:681-708.

142 HE ZHIGANG, WANG DONGXIAO, HU JIANYU. Features of eddy kinetic energy and variations of upper circulation in the South China Sea[J]. Acta Oceanol Sin, 2002,21(2):305-314.

143 WANG GUIHUA, SU JILAN, CHU P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophys Res Lett, 2003,30(21):2121.

144 ZHUANG WEI, DU YAN, WANG DONGXIAO,et al. Pathways of mesoscale variability in the South China Sea[J]. Chinese J Ocean Limn, 2010,28(5):1055-1067.

145 ZHUANG WEI, XIE SHANG-PING, WANG DONGXIAO,et al. Intraseasonal variability in sea surface height over the South China Sea[J]. J Geophys Res, 2010,115:C04010.

146 杨海军),(刘秦玉). 南海上层水温分布的季节特征[J]. (海洋与湖沼,) 1998,29(5):501-507.

147 SHAW P T, CHAO S Y, FU L L. Sea surface height variations in the South China Sea from satellite altimetery[J]. Oceanol Acta, 1999,22(1):1-17.

148 QU TANGDONG. Upper layer circulation in the South China Sea[J]. J Phys Oceanogr, 2000,30:1450-1460.

149 WANG GUIHUA, CHEN DAKE, SU JILAN. Generation and life cycle of the dipole in South China Sea summer circulation[J]. J Geophys Res, 2006,111:C06002.

150 刘先炳),(苏纪兰). 南海环流的一个约化模式[J]. (海洋与湖沼) 1992,23:167-174.

151 李立),(苏纪兰),(许建平). 南海的黑潮分离环流[J]. (热带海洋) 1997,16(2):42-57.

152 WANG DONGXIAO, XU HONGZHOU, LIN JING,et al. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004[J]. J Oceanogr, 2008,64(6):925-935.

153 JIA YINGLAI, CHASSIGNET E P. Seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait[J]. J Oceanogr, 2011,67(5):601-611.

154 CHEN GENGXIN, HU PO, HOU YIJUN,et al. Intrusion of the Kuroshio into the South China Sea, in September 2008[J]. J Oceanogr, 2011,67(4):439-448.

155 METZGER E J, HURLBURT H E. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. J Phys Oceanogr, 2001,31(7):1712-1732.

156 HU JIANYU, ZHENG QUANAN, SUN ZHENYU,et al. Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data[J]. J Geophys Res, 2012,117:C03010.doi:10.1029/2011JC007525

157 NAN FENG, XUE HUIJIE, XIU PENG,et al. Oceanic eddy formation and propagation southwest of Taiwan[J]. J Geophys Res, 2011,116:C12045.

158 CHU P C, CHEN YUCHUN, LU SHIHUA. Wind-driven South China Sea deep basin warm-core/cool-core eddies[J]. J Oceanogr, 1998,54:347-360.

159 王桂华),(苏纪兰),(齐义泉). 南海中尺度涡研究进展[J]. (地球科学进展) 2005,20(8):882-886.

160 WANG GUIHUA, CHEN DAKE, SU JILAN. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. J Phys Oceanogr, 2008,38:726-732.

161 HECHT M W, HASUMI H. Ocean modeling in an eddying regime. Geophys Monogr Ser 177[G]. Washington D C: AGU, 2008:409.

162 MCWILLIAMS J C. Submesoscale, coherent vortices in the ocean[J]. Rev Geophys, 1985,23(2):165-182.

163 ELDEVIK R, DYSTHE K B. Spiral eddies[J]. J Phys Oceanogr, 2002,32:851-869.

164 THOMAS L N, TANDON A, MAHADEVAN A. Submesoscale processes and dynamics[G]// HECHT M W, HASUMI H. Ocean modeling in an eddying regime. Geophys Monogr Ser 177. Washington D C: AGU, 2008,177(1):17-38.

165 CHAVANNE C P, FLAMENT P, GURGEL K W. Interactions between a submesoscale anticyclonic vortex and a front[J]. J Phys Oceanogr, 2010,40:1802-1818.

166 ZHENG QUANAN, LIN HUI, MENG JUNMIN,et al. Sub-mesoscale ocean vortex trains in the Luzon Strait[J]. J Geophys Res, 2008,113:C04032.

167 LE TRAON P Y, MORROW R A,Ocean current and eddies[M]// FU L L, CAZENAVE A. Satellite altimetry and earth sciences. New York: Elsevier, 2001:171-215.

168 [168]MORROW R, LE TRAON P-Y. Fifteen years of satellite altimetry and mesoscale ocean dynamics[C]//Proc. 15 Years of Progress in Radar Altimetry Symp. Venice: The European Space Agency, 2006. http://earth.esa.int/workshops/venice06/ participants/889/paper_889_morrow-v2.pdf.

169 FU L L, CHELTON D B, LE TRAON P Y, MORROW R. Eddy dynamics from satellite altimetry[J]. Oceanogr, 2010,23(4):15-25.

170 CHAVANNE C P, KLEIN P. Can oceanic submesoscale processes be observed with satellite altimetry? [J]. Geophys Res Lett, 2010,37:L22602.

171 FU L L, FERRARI R. Observing oceanic submesoscale processes from space[J]. Eos Trans, 2008,89(48):488.

172 [172]WILSON S, PARISOT F, ESCUDIER P, et al. Ocean surface topography constellation: The next 15 years in satellite altimetry[C/OL]//HALL J, HARRISON D E, STAMMER D. Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference, Vol. 2. Venice: ESA, 2010. http://www.oceanobs09.net/proceed- ings/cwp/cwp92/ doi:10.5270/OceanObs09.cwp.92.

173 CASAL T G D, BEAL L M, LUMPKIN R. A North Atlantic deep-water eddy in the Agulhas Current system[J]. Deep Sea Res Pt Ⅰ, 2006,53(10):1718-1728.

174 GORDON A L, GIULIVI C F, LEE C M,et al. Japan/East Sea intrathermocline eddies[J]. J Phys Oceanogr, 2002,32:1960-1974.

175 NAUW J J, VAN AKEN H M, LUTJEHARMS J R E,et al. Intrathermocline eddies in the Southern Indian Ocean[J]. J Geophys Res, 2006,111:C03006.

176 HU JIANYU, GAN JIANPING, SUN ZHENYU,et al. Observed three-dimensional structure of a cold eddy in the southwestern South China Sea[J]. J Geophys Res, 2011,116:C05016.

177 DONG CHANGMING, LIN XIAYAN, LIU YU,et al. Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product[J]. J Geophys Res, 2012,117:C00H14.

178 NAN FENG, HE ZHIGANG, ZHOU HUI,et al. Three long-lived anticyclonic eddies in the northern South China Sea[J]. J Geophys Res, 2011,116:C05002.

179 GRUBER N, LACHKAR Z, FRENZEL H,et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems[J]. Nat Geosci, 2011,4(11):787-792.

文章导航

/