收稿日期: 2011-02-18
修回日期: 2013-06-10
网络出版日期: 2013-06-10
基金资助
基金项目:国家重点基础研究发展计划项目(2013CB430303);中国科学院重要方向性项目(KZCX2-YW-226);国家自然科学基金项目(U1033002、40906009)
The sea surface temperature, eddy kinetic energy and available gravitational potential energy of cold-core eddies in response to tropical cyclones in the South China Sea
Received date: 2011-02-18
Revised date: 2013-06-10
Online published: 2013-06-10
选择了12个个例,分析了冷涡区域海表面温度(sea surface temperature, SST)对热带气旋(tropical cyclone, TC)的响应。在TC的影响下,冷涡区域SST降低的最大值在2.7—9.15℃,冷涡平均降温1.35—5.89℃。冷涡SST降低与TC移动速度有很好的反向关联,移动速度越慢,冷涡SST降低越多。冷涡SST降低与TC平均最大风速有较好的正向关联,最大风速越大,冷涡SST降低越多。TC对冷涡的能量改变起着重要的作用,TC经过冷涡后,冷涡的动能 (eddy kinetic energy, EKE)、有效重力位能 (available gravitational potential energy, AGPE)有明显增长,并且EKE的增长小于AGPE的增长。TC作用前后EKE、AGPE的增长与冷涡区域SST降低的平均呈正向关联,表明在TC的影响下,冷涡的EKE、AGPE的改变能够反映SST降低的程度,或者说SST降低的多少能够反映冷涡EKE、AGPE改变的程度。
朱海斌 , 尚晓东 , 陈桂英 , 徐驰 . 南海冷涡区域SST及冷涡动能、有效重力位能对热带气旋的响应[J]. 热带海洋学报, 2013 , 32(2) : 47 -54 . DOI: 10.11978/j.issn.1009-5470.2013.02.005
We chose 12 cases to analyze the responses of sea surface temperature (SST) in cord-core eddies to tropical cyclones (TCs). The maximum SST reduction in the cold-core eddy regions ranged from 2.7 to 9.15℃, while the mean SST reduction of the cold-core eddy regions was 1.35-5.89℃. The inverse correlation between the SST reduction in the cold-core eddy region and the moving speed of TC was studied using these 12 cases: the slower the moving speed of TC was, the more reduction the SST in the cold-core eddy region had. And there was a positive correlation between the SST reduction in the cold-core eddy region and the mean maximum wind speed of the TC: the weaker the mean maximum wind speed was, the less the SST decreased. Under the influence of TC, the eddy kinetic energy (EKE) and available gravitational potential energy (AGPE) of core-core eddies obviously increased, and the AGPE increased more than the EKE. The change of EKE (AGPE) after the TC passed to that before the TC correlated well with the average SST cooling in the cold-core eddy region, which reflects that under the influence of TC, the increases of EKE and AGPE can be used as indicators for the SST cooling in the cold-core eddy region.
Key words: tropical cyclone; cold-core eddy; response of the upper ocean
[1] SCHADE L R, EMANUEL K A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere ocean model[J]. J Atmos Sci, 1999,56:642-651.
[2] WU C, LEE C, LIN I. The effect of the ocean eddy on tropical cyclone intensity[J]. J Atmos Sci, 2007,64:3562-3578.
[3] Shay L K, Goni G J, Black P G. Effects of a warm oceanic feature on Hurricane Opal[J]. Monthly Weather Review, 2000,128(5):1366-1383.
[4] LIN I, WU C, EMANUEL K A,et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy [J]. Mon Weather Rev, 2005,133:2635-2649.
[5] LIN I, CHEN C, PUN I,et al. Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008)[J]. Geophys Res Lett, 2009,36, L03817. doi:10.1029/ 2008GL035815.
[6] WANG G H, SU J L, DING Y H,et al. Tropical cyclone genesis over the South China Sea[J]. J Mar Syst, 2007,68:318-326.
[7] 杨晓霞),(唐丹玲). 台风引起南海海表面降温的位置变化特征[J]. (热带海洋学报,) 2010,29(4):26-31.
[8] 崔红),(张书文),(王庆业). 南海对于台风伊布都响应的数值计算[J]. (物理学报,) 2009,58(9):6609-6615.
[9] PRICE J F. Upper ocean response to a hurricane[J]. J Phys Oceanogr, 1981,11:153-175.
[10] EMANUEL K. Thermodynamic control of hurricane intensity [J]. Nature, 1999,401:665-669.
[11] LU Z M, HUANG R X. The three-dimensional steady circulation in a homogenous ocean induced by a stationary hurricane[J]. J Phys Oceanogr, 2010,40:1441-1457.
[12] JACOB S D, SHAY L K, MARIANO A J. The 3D oceanic mixed layer response to Hurricane Gilbert[J]. J Phys Oceanogr, 2000,30:1407-1429.
[13] PRASAD T G, HOGAN P J. Upper-ocean response to Hurricane Ivan in a 1/25° nested Gulf of Mexico HYCOM[J]. J Geophys Res, 2007,112, C04013. doi:10.1029/ 2006JC003695.
[14] WALKER N D, LEBEN R R, BALASUBRAMANIAN S. Hurricane forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico[J]. Geophys Res Lett, 2005,32, L18610. doi:10.1029/2005GL023716.
[15] SHANG S L, LI L, SUN F Q,et al. Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001[J]. Geophys Res Lett, 2008,35, L10602. doi:10.1029/2008GL033502.
[16] ZHENG Z W, HO C R, KUO N J. Importance of pre-existing oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang[J]. Geophys Res Lett, 2008,35, L20603. doi:10.1029/2008GL035524.
[17] ROEMMICH D, GILSON J. Eddy transport of heat and thermocline waters in the north pacific: A key to interannual/decadal climate variability? [J]. J Phys Oceanogr, 2001,31:675-687.
[18] 程旭华),(齐义泉). 基于卫星高度计观测的全球中尺度涡的分布和传播特征[J]. (海洋科学进展,) 2008,26(4):447-453.
[19] FORGET G, WUNSCH C. Estimated global hydrographic variability [J]. J Phys Oceanogr, 2007,37:1997-2008.doi:10.1175/JPO03072.1
[20] LIN C Y, HO C R, ZHENG Z W,et al. Validation and variation of upper layer thickness in South China Sea from satellite altimeter data[J]. Sensors, 2008,8:3802-3818.doi:10.3390/s8063802
[21] HUANG R X Ocean circulation, wind-driven and thermohaline processes[M]. Cambridge: Cambridge University Press, 2010: 806.
[22] XU C, SHANG X D, HUANG R X. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data[J]. Ocean Dynamics, 2011,61(4):525-541.
[23] LIU L L, WANG W, HUANG R X. The mechanical energy input to the ocean induced by tropical cyclones[J]. J Phys Oceanogr, 2008,38:1253-1266.
/
〈 | 〉 |