收稿日期: 2011-04-18
修回日期: 2013-06-10
网络出版日期: 2013-06-10
基金资助
基金项目:中国科学院知识创新项目(KZCX2-YW-227);国家科技支撑计划项目(2009BAB44B01);国家海洋局公益性项目(201005012-6);国家自然科学基金国家(地区)合作与交流项目(40931160437);国家自然科学基金项目(40776085)
Skeletal architecture and microstructure of calcifying coral pocillopora damicornis
Received date: 2011-04-18
Revised date: 2013-06-10
Online published: 2013-06-10
石珊瑚骨骼对重建古海洋古气候环境,评估珊瑚礁对未来气候变化、海洋酸化的响应和反馈,辨识现存造礁石珊瑚种属及其演化途径有着十分重要的作用和意义。为了更好地认知造礁石珊瑚骨骼特征,在三亚海域采集了常见的造礁石珊瑚——鹿角杯形珊瑚Pocillopora damicornis ,通过扫描电镜(结合EDS能谱仪)、红外分光显微镜分析其碳酸钙骨骼结构和成分的特征,结果表明鹿角杯形珊瑚骨骼主要成分为文石,少数骨骼样品的空腔中发育有极少量方解石矿物。虽然鹿角杯形珊瑚骨骼宏观架构和中观架构在群体间和单体间存在诸多差异,但不同形态的骨骼样品具有基本相同的发育模式和基础结构单元。同时,发现鹿角杯形珊瑚骨骼内部空腔存在有次生文石沉积发育现象,同时常伴生着水镁石矿物的发育,而且这与骨骼中的钻孔穴居动物有很大关联。
叶承 , 黄晖 , 张成龙 . 鹿角杯形珊瑚骨骼构造和显微结构的研究[J]. 热带海洋学报, 2013 , 32(2) : 102 -111 . DOI: 10.11978/j.issn.1009-5470.2013.02.012
Scleractinian coral skeleton is one of the central keys to determining scleractinian evolution and classification. And it is increasingly applied to reconstructing past ocean and climate histories and to predicting future impacts of climate change and ocean acidification on coral reefs. To better understand skeletogenesis and microstructure in extant scleractinian corals, we analyzed the microstructure and composition of common reef-building coral Pocillopora damicornisfrom Sanya using Scanning Electron Microscope (SEM) and infrared spectroscopic methods. The results revealed that the skeletons were predominantly comprised of aragonite, with limited calcite. The macro- and meso-architectures varied between colonies and corallites. There were several types of skeletons, which had distinct morphology but shared the same basic structure and growth pattern. The occurrence of cements, which combined with the secondary aragonite and brucite in the inter-septal zone, were associated with habitats and micoborings.
Key words: Pocillopora damicornis; coral skeleton; calcium carbonate; microstructure; brucite
[1] BECK J W, EDWARDS R L, ITO E. Sea-surface temperature from coral skeletal strontium/calcium ratios[J]. Science, 1992, 257(5070): 644-647.
[2] MITSUGUCHI T, MATSUMOTO E, ABE O,et al. Mg/Ca thermometry in coral skeletons[J]. Science, 1996, 274(5289): 961-963.
[3] MCCULLOCH M, FALLON S, WYNDHAM T,et al. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement[J]. Nature, 2003, 421(6924): 727-730.
[4] LEA D W, SHEN G T, BOYLE E A. Coralline barium records temporal variability in equatorial Pacific upwelling[J]. Nature, 1989, 340(6232): 373-376.
[5] CHAPPELL J, POLACH H. Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea[J]. Nature, 1991, 349(6305): 147-149.
[6] 施祺),(孙东怀),(张叶春). 珊瑚骨骼生长特征的数字影像分析[J]. 海洋通报, 2004, 23(4): 19-24.
[7] 邹仁林) 造礁石珊瑚[M]//中国动物志. 北京: 科学出版社, 2001: 7.
[8] 聂宝符),(梁美桃),(朱袁智),等 海南礁区现代造礁珊瑚类骨骼细结构的研究[M]. 北京: 中国科学技术出版社, 1991: 1-5.
[9] COHEN A L, MCCORKLE D C, DE PUTRON S,et al. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification[J]. Geochemistry Geophysics Geosystems, 2009, 10(7): Q07005.
[10] HOLCOMB M, COHEN A L, GABITOV R I,et al. Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4166-4179.
[11] NOTHDURFT L, WEBB G. Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate- sensitive geochemical archives[J]. Facies, 2009, 55(2): 161-201.
[12] HUBBARD J. Life and afterlife of reef corals: A timed study of incipient diagenesis[C]. Nice: 9th Int Sedimental Congr, 1975:75-80.
[13] HUBBARD J. Cavity formation in living scleractinian reef corals and fossil analogues[J]. Geol Rundsch, 1972, 61: 551-564.
[14] MACINTYRE I G. Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama[J]. Journal of Sedimentary Research, 1977, 47(2): 503-516.
[15] 王增吉),(俞学光). 柴达木盆地北缘石灰沟晚石炭世的四射珊瑚[J]. 地球学报, 1995, 3(3): 313-315.
[16] 尹庆水),(张余),(李兆麟),等. 复合珊瑚羟基磷灰石人工骨的研制和临床应用[J]. 骨与关节损伤杂志, 2003, 18(3): 147-149.
[17] VERON J E N. Corals of Australia and the Indo-Pacific[M]. Hawaii: Univ of Hawaii Pr., 1993:20-30.
[18] MA T Y. On the growth rate of reef corals and its relation to sea water temperature[J]. Paleontologia Sinica Series B, 1937, XVI(1): 1-226.
[19] EDMONDSON C H. The ecology of an Hawaiian coral reef: Vol. 45[M]. Bishop Mus: Bull Bernice P, 1928:1-64.
[20] CLODE P, MARSHALL A. Variation in skeletal microstructure of the coral Galaxea fascicularis: Effects of an aquarium environment and preparatory techniques[J]. The Biological Bulletin, 2003, 204(2): 138-145.
[21] NOTHDURFT L, WEBB G. Microstructure of common reef-building coral genera Acropora , Pocillopora , Goniastrea and Porites : Constraints on spatial resolution in geochemical sampling[J]. Facies, 2007, 53(1): 1-26.
[22] Semenoff P. Microstructure of Siphonodendron (Lithostrotionidae)[J]. Palaeontogr Amer, 1984(54): 489-500.
[23] PERRIN C, CUIF J. Ultrastructural controls on diagenetic patterns of scleractinian skeletons: evidence at the scale of colony lifetime[J]. Bulletin of the Tohoku University Museum, 2001, 1: 210-218.
[24] 戴昌凤),(洪圣雯) 台湾珊瑚图鉴[M]. 台北: 猫头鹰出版社, 2009: 36-37.
[25] KAANDORP J. Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients[J]. Marine Biology, 1999, 134(2): 295-306.
[26] 张江勇),(余克服). 珊瑚骨骼生长研究评述[J]. 地质评论, 2008, 54(003): 362-372.
[27] RIDDLE D. Stony coral identification primer for aquarists, part one[J] Advanced Aquarist, 2007, 6(9): 10-20.
[28] BROWN B, HEWIT R, LE TISSIER M. The nature and construction of skeletal spines in Pocillopora damicornis (Linnaeus)[J]. Coral reefs, 1983, 2(2): 81-89.
[29] NOTHDURFT L. 活珊瑚骨骼中的水镁石微银星石: 浅海背景中极端微环境的指示物[J]. 海洋地质动态, 2005, 21(8): 10-13.
[30] NOTHDURFT L, WEBB G, BUSTER N. Brucite microbialites in living coral skeletons: Indicators of extreme microenvironments in shallow-marine settings[J]. Geology, 2005, 33(3): 169-172.
[31] WAINWRIGHT S. Skeletal organization in the coral, Pocillopora damicornis [J]. Journal of Cell Science, 1963, 3(66): 169-183.
[32] WISE S W. Scleractinian coral exoskeletons: Surface microarchitecture and attachment scar patterns[J]. Science, 1970, 169(3949): 978-980.
[33] VANDERMEULEN J, WATABE N. Studies on reef corals. Ⅰ. Skeleton formation by newly settled planula larva of Pocillopora damicornis [J]. Marine Biology, 1973, 23(1): 47-57.
[34] CUIF J P, DAUPHIN Y, DOUCET J,et al. XANES mapping of organic sulfate in three scleractinian coral skeletons[J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 75-83.
[35] SPINAZE K A, SMITH S D A, SIMPSON R D. The effect of depth and wave exposure on the density and porosity of Pocillopora damicornis in the Solitary Islands Marine Reserve [C]//The Great Barrier Reef: Science, use and management. Townsville: Great Barrier Reef Marine Park Authority, 1996:72-76.
[36] HUGHES T. Skeletal density and growth form of corals[J]. Mar Ecol Prog Ser, 1987, 35(3): 259-266.
[37] FROST R L, KLOPROGGE J T. Infrared emission spectroscopic study of brucite[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1999, 55(11): 2195-2205.
[38] BUSTER N, HOLMES C. Magnesium content within the skeletal architecture of the coral Montastraea faveolata : Locations of brucite precipitation and implications to fine-scale data fluctuations[J]. Coral Reefs, 2006, 25(2): 243-253.
[39] NOTHDURFT L, WEBB G, BOSTROM T,et al. Calcite-filled borings in the most recently deposited skeleton in live-collected Porites (Scleractinia): Implications for trace element archives[J]. Geochimica et Cosmochimica Acta, 2007, 71(22): 5423-5438.
[40] CUIF J-P, DAUPHIN Y. Microstructural and physico- chemical characterization of ‘centers of calcification’ in septa of some recent scleractinian corals[J]. Paläontologische Zeitschrift, 1998, 72(3): 257-269.
[41] MEIBOM A, CUIF J-P, HILLION F,et al. Distribution of magnesium in coral skeleton[J]. Geophysical Research Letters, 2004, 31(23): L23306.
[42] WEINER S, DOVE P M. An overview of biomineralization processes and the problem of the vital effect[J]. Reviews in Mineralogy and Geochemistry, 2003, 54: 1-29.
[43] CLODE P, LEMA K, SAUNDERS M,et al. Skeletal mineralogy of newly settling Acropora millepora (Scleractinia) coral recruits[J]. Coral Reefs, 2010, 30(1): 1-8.
/
〈 | 〉 |