海洋水文学

南海北部沙波区海底强流的内波特征及其对沙波运动的影响

  • 夏华永 ,
  • 刘愉强 ,
  • 杨阳
展开
  • 国家海洋局南海工程勘察中心, 广东 广州 510300
夏华永(1967—),男,湖南省沅江市人,研究员,从事物理海洋学研究.

收稿日期: 2008-09-26

  修回日期: 2009-01-16

  网络出版日期: 2009-12-12

基金资助

国家高技术研究发展(863)计划海洋技术领域重点项目(SQ2007AA09XD145713)

Internal-wave characteristics of strong bottom currents at the sand-wave zone of the northern South China Sea and its role in sand-wave motion

  • XIA Hua-yong ,
  • LIU Yu-qiang ,
  • YANG Yang
Expand
  • South China Sea Marine Engineering Prospecting Center, SOA, Guangzhou 510300, China
夏华永(1967—),男,湖南省沅江市人,研究员,从事物理海洋学研究.

Received date: 2008-09-26

  Revised date: 2009-01-16

  Online published: 2009-12-12

Supported by

国家高技术研究发展(863)计划海洋技术领域重点项目(SQ2007AA09XD145713)

摘要

2008年3月6日至2008年4月9日, 在南海北部外陆架与陆坡上的沙波区进行了海底流速的连续观测,观测结果表明潮流与海流较弱,但时有流速达30—77cm.s-1的海底强流发生。强流方向与南海北部内波传播方向相对应,多分布在偏NW向与偏SE向。偏SE向流强于偏NW向流,与内波在传播方向上的下坡流大于上坡流的特征一致。对流速序列进行了旋转功率谱分析,结果表明,高于M2分潮的频率中,众多的振荡分量具有内波流性质,说明阵发性强流为内波所致。采用观测流速计算了沙波的移动速度,计算结果得出强流能起动海底泥沙,由于NW向传播(上坡方向)的内波导致了SE向(下坡方向)的净流动,沙波偏SE向移动,但沙波移动速度不大,小型沙波移动速度小于1.6m.a-1。采用潮流、风暴潮耦合模型计算了强台风驱动的海底流速过程,表明潮流、风暴潮耦合也能移动海底沙波,但沙波移动方向与台风路径相关,不一定为SE向,且移动距离更小,潮流、风暴潮耦合不是沙波移动的主要动力机制。

本文引用格式

夏华永 , 刘愉强 , 杨阳 . 南海北部沙波区海底强流的内波特征及其对沙波运动的影响[J]. 热带海洋学报, 2009 , 28(6) : 15 -22 . DOI: 10.11978/j.issn.1009-5470.2009.06.015

Abstract

From the 6th March to the 9th April in 2008, serial bottom-current observations were carried out at the sand-wave zone of the continental shelf and slope in the northern South China Sea (SCS). The measurements show that the tidal current and ocean current are weak at the observation sites, but bottom currents as strong as 30-77 cm.s-1 occur frequently. The directions of the strong bottom currents are related to the northwestward propagation of the internal waves in the region. Most of the strong currents are nearly northwestward or nearly southeastward, and the southeastward currents are stronger than the northwestward ones, which corresponds to the feature of downslope flows stronger than upslope ones when internal waves propagating onshore. Rotary power spectral analysis is carried out for the time series of current velocity. The results show that most of the rotary components higher than the frequency of M2 tide have the characteristics of internal-wave flows, further demonstrating that the frequent, strong bottom currents are induced by internal waves. The measurements are used to calculate the motion speed of sand waves. The results also show that the strong currents can initiate the sea bottom sediments, and due to downslope flows stronger than upslope ones, the sand waves move southeastwards at a low speed less than 1.6 m.yr-1. In addition, the authors model the coupled tide-storm bottom current fields in the northern SCS. From the modeling, the bottom currents, driven by strong typhoon and tide, can move the sand waves, but only move them a very short distance during each typhoon process. The direction of the movement is subject to the typhoon route, which is not always southeastward. Therefore, the coupled tide-storm currents are not the major factor to move the sand waves.

参考文献

[1] 冯文科,夏真,李小荣.南海北部海底沙波稳定性研究[J].南海地质研究,1993,(5):26—43.
[2] 冯文科,黎维峰,石要红.南海北部海底沙波地貌动态研究[J].海洋学报,1994,13(3):92—99.
[3] 冯文科,黎维峰.南海北部海底沙波地貌[J].热带海洋,1994,13(3):39—46.
[4] 彭学超,吴庐山,崔兆国等.南海东沙群岛以北海底沙波稳定性分析[J].热带海洋,2006,25(3):21—27.
[5] 王尚毅,李大鸣.南海珠江口盆地陆架斜坡及大陆坡海底沙波动态分析[J].海洋学报,1994,16(6):122—132.
[6] 陈鸣.陆丰13-1平台场地海底稳定性分析与评价[J].热带海洋,1995,14(2):40—46.
[7] 王文介.南海北部的潮波传播与海底沙脊和沙波发育[J].热带海洋,2000,19(1):1—7.
[8] 吴建政,胡日军,朱龙海,等.南海北部海底沙波研究[J].中国海洋大学学报,2006,36(6):1019—1023.
[9] 邱章,方文东.南海北部春季海流的垂向变化[J].热带海洋, 1999, 18(4):32—39.
[10] 方文东,陈荣裕,毛庆文.南海北部大陆坡区的突发性强流[J].热带海洋,2000,19(1):70—75.
[11] 邱章,徐锡祯,龙小敏.南海北部一观测点内潮特征的初步分析[J].热带海洋,1996,15(4):64—67.
[12] HSU M-K, LIU A K, LIU C. A study internal waves in the China Seas and Yellow Sea using SAR[J].  Continental Shelf Research, 2000, 29: 389—410.
[13] ZHAO Z, KLEMAS V, ZHENG Q, et al. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea[J]. Geophysical Research Letters, 2004, 31, L06302.
[14] CACCHIONE D A. Incipient Sediment Movement by Shoaling Internal Gravity Waves[J]. Journal of Geophysical Research, 1974, 79(15): 2237—2242.
[15] HOLLOWAY P E, BARNES B. A numerical investigation into the bottom boundary layer flow and vertical structure of internal waves on a continental slope[J]. Continental Shelf Research, 1998, 16:31—65.
[16] NOBLE M A, XU J P. Observations of large-amplitude cross-shore internal bores near the shelf break[J]. Marine Environmental Research, 2003, 56:127—149.
[17] JORDAN G F. Large submarine sand waves[J]. Science, 1962, 136: 1—10
[18] 张兴阳,何幼斌,罗顺社,等. 内波单独作用形成的深水沉积物波[J]. 古地理学报, 2002, 4(1):83—89.
[19] 张兴阳.深水牵引流形成的床形单元组合[J].古地理学报,2000, 2(2):28—30.
[20] PAWLOWICZ R, BEARDSLEY B, LENTZ S. Classical tidal harmonic analysis including error estimates in Matlab using T_TIDE[J]. Computers and Geosciences, 2002, 28: 929—937.
[21] CHU P C, LI R. South China Sea Isopycnal-Surface Circulation[J]. Journal of Physical Oceanography, 2002, 30: 2419—2438.
[22] GONELLA J. Rotary-component method for analysing meteorological and oceanographic vector time series[J].Deep Sea Research., 1972,19: 833— 846.
[23] van HAREN H. On the polarization of oscillatory currents in the Bay of Biscay[J]. Journal of Geophysical Research, 2003,108(C9): 3290.
[24] 云凤娟,钟欢良.温、盐、密跃层分布与变化.南海北部陆架邻近水域十年水文断面调查报告[M].北京:海洋出版社, 1990.
[25] van RIJN L C. Sediment transport, PartⅡ:bed load transport[J].Journal of Hydraulic Engineering, ASCE, 1984, 110(11):1431—1456.
[26] 钱宁,万兆惠.泥沙运动力学[M].北京: 科学出版社, 1986.
[27] 夏华永,廖世志,肖志建.基于床面层内能量平衡关系的推移质输沙公式[J].水利水运工程学报,2006,(4):1—9.
[28] 夏华永,詹华平,朱鹏利,等.潮流、风暴潮耦合模型推算珠江口海域极值流速[J].海洋工程,2005,23(2):31—40.

文章导航

/