收稿日期: 2012-02-17
修回日期: 2012-04-05
网络出版日期: 2013-08-28
Phytoplankton biomass size structure in Daya Bay during summer and winter
Received date: 2012-02-17
Revised date: 2012-04-05
Online published: 2013-08-28
于2010年8月和2011年1月对大亚湾6个典型站位的浮游植物进行采样调查, 估算了浮游植物细胞体积, 分析了各区域浮游植物的粒级组成, 比较了大亚湾各典型站位浮游植物生物量的粒级结构差异。大亚湾浮游植物的细胞体积范围为64—496757μm3, 以1600—3200μm3粒级的浮游植物种类最多, 分布在粒级谱两端的浮游植物的种类较少。夏季大亚湾浮游植物细胞丰度和由细胞体积转换的湿重生物量高于冬季, 夏季平均为76.5×104个·L-1和1.6mg·L-1, 冬季平均为22.52×104个·L-1和0.45mg·L-1。夏冬两季均以营养盐水平高且水交换能力差的S8站位生物量最高, 且该站夏冬两季均以甲藻为主。夏季大亚湾湾内站位和冬季大部分站位顶端粒级的种类对浮游植物初级生产力和碳库的贡献很重要, 但因为丰度小, 在细胞丰度表示的浮游植物现存量和优势种中没有体现, 细胞体积转换生物量则能更为客观合理地表征浮游植物现存量和作为优势种的判断依据。
马艳娥 , 柯志新 , 黄良民 , 谭烨辉 . 夏冬两季大亚湾典型海域浮游植物粒级结构特征*[J]. 热带海洋学报, 2013 , 32(3) : 40 -46 . DOI: 10.11978/j.issn.1009-5470.2013.03.006
Based on samples collected at six typical sites of Daya Bay in August 2010 and January of 2011, phytoplankton cell volume was estimated, phytoplankton size structure was analyzed, and phytoplankton biomass size structure was investigated. Cell volume of phytoplankton in Daya Bay was in the range of 64 to 496757 μm3, though only a few species distributed at the two ends of the range; the species distributed in the range of 1600-3200 μm3 were the richest. Phytoplankton cell abundance and cell volume converted biomass were 76.5×104 cell·L-1 and 1.6 mg·L-1 in summer, and 22.52×104 cell·L-1 and 0.45 mg·L-1 in winter, respectively, which were both obviously lower than those in summer. S8 that was labeled by highest nutrient and lowest water exchange capability showed the highest biomass and was dominated by dinoflagellates in both summer and winter. At most sites in winter and those sites inside the bay in summer, the species with the largest cell size made significant contribution to biomass and carbon stock. However, the contribution of large species with low abundance could not be seen through cell abundance represented biomass and key species. Biomass converted by cell volume was comparatively a more reasonable way to represent phytoplankton stock and to identify key species than cell abundance.
Key words: phytoplankton; cell size; size structure; biomass; Daya Bay
[1] MUNK W H, RILEY G A. Absorption of nutrients by aquatic plants[J]. J Mar Res, 1952, 11(2): 215-240.
[2] CERMENO P, MARANON E, RODRIGUEZ J, et al. Large-sized phytoplankton sustain higher carbonspecific photosynthesis than smaller cells in a coastal eutrophic ecosystem[J]. Mar Ecol-Prog Ser, 2005, 297: 51-60.
[3] RUIZ J, GARCIA C M, RODRIGUEZ J. Vertical patterns of phytoplankton size distribution in the Cantabric and Balearic Seas[J]. J Mar Syst, 1996, 9(3-4): 269-282.
[4] RICHARDSON T L, JACKSON G A. Small phytoplankton and carbon export from the surface ocean[J]. Science, 2007, 315(5813): 838-840.
[5] JACKSON G A. Simulation of backterial attraction and adhesion to falling particles in an aquatic enviroment[J]. Limnol Oceanogr, 1989, 34(3): 514-530.
[6] SOMMER F, STIBOR H, SOMMER U, et al. Grazing by mesozooplankton from Kiel Bight, Baltic Sea, on different sized algae and natural seston size fractions[J]. Mar Ecol- Prog Ser, 2000, 199: 43-53.
[7] CUSHING D H. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified[J]. J Plankton Res, 1989, 11(1): 1-13.
[8] LITCHMAN E, KLAUSMEIER C A, YOSHIYAMA K. Contrasting size evolution in marine and freshwater diatoms[J]. PNAS, 2009, 106(8): 2665-2670.
[9] 孙军, 刘东艳, 钟华, 等. 浮游植物粒级研究方法的比较[J]. 青岛海洋大学学报: 自然科学版, 2003, 33(06): 917-924.
[10] 王友绍, 王肇鼎, 黄良民, 等. 近20年来大亚湾生态环境的变化及其发展趋势[J]. 热带海洋学报, 2004, 23(05): 85-95.
[11] 郝彦菊, 唐丹玲. 大亚湾浮游植物群落结构变化及其对水温上升的响应[J]. 生态环境学报, 2010, 19(08): 1794-1800.
[12] 孙翠慈, 王友绍, 孙松, 等. 大亚湾浮游植物群落特征[J]. 生态学报, 2006, 26(12): 3948-3958.
[13] 中国国家标准化管理委员会. 海洋调查规范——海洋生物调查[M]. 北京: 中国标准出版社, 2007: 30-33.
[14] 金德祥, 陈金环, 黄凯歌. 中国海洋浮游硅藻类[M]. 上海: 上海科学技术出版社, 1965: 20-214.
[15] 郭玉洁, 钱树本. 中国海藻志: 第五卷•硅藻门: 第一册•中心纲[M]. 北京: 科学出版社, 2003: 101-423.
[16] 孙军, 刘东艳. 中国海区常见浮游植物种名更改初步意见[J]. 海洋与湖沼, 2002, 33(03): 271-286.
[17] 孙军, 刘东艳, 钱树本. 浮游植物生物量研究Ⅰ. 浮游植物生物量细胞体积转化法[J]. 海洋学报: 中文版, 1999, 21(02): 75-85.
[18] KAMENIR Y, DUBINSKY Z, ZOHARY T. The long-term patterns of phytoplankton taxonomic size-structure and their sensitivity to perturbation: A Lake Kinneret case study[J]. Aquat Sci, 2006, 68(4): 490-501.
[19] WU MEILIN, WANG YOUSHAO. Using chemometrics to evaluate anthropogenic effects in Daya Bay, China[J]. Estuar Coast Shelf S, 2007, 72(4): 732-742.
[20] KRIEST I, OSCHLIES A. Modelling the effect of cell-size-dependent nutrient uptake and exudation on phytoplankton size spectra[J]. Deep-Sea Res PTⅠ, 2007, 54(9): 1593-1618.
[21] 王聪, 林军, 陈丕茂, 等. 大亚湾水交换的数值模拟研究[J]. 南方水产, 2008, 14(04): 8-15.
[22] SONG XINGYU, HUANG LIANGMIN, ZHANG JIANLIN, et al. Harmful algal blooms (HABs) in Daya Bay, China: An in situ study of primary production and environmental impacts[J]. Mar Pollut Bull, 2009, 58(9): 1310-1318.
[23] 林旭吟. 香港海域浮游植物种类多样性与群落动态研究[D]. 厦门: 厦门大学, 2007: 25.
[24] WANG ZHAOHUI, MU DEHAI, LI YOUFU, et al. Recent eutrophication and human disturbance in Daya Bay, the South China Sea: Dinoflagellate cyst and geochemical evidence[J]. Estuar Coast Shelf S, 2011, 92(3): 403-414.
/
〈 |
|
〉 |