海洋生物学

造礁石珊瑚白化相关功能基因的研究进展

  • 黄晖 ,
  • 许昌有 ,
  • 袁涛
展开
  • 1. 中国科学院南海海洋研究所海洋生物资源可持续利用重点实验室, 广东 广州510301; 2. 中国科学院海南热带海洋生物实验站, 海南 三亚 572000; 3.中国科学院大学, 北京 100049
许昌有(1985—), 男, 湖南省邵阳市人, 硕士, 主要从事珊瑚分子生物学研究。E-mail: xiangbeixiaozi@163.com

收稿日期: 2011-10-21

  修回日期: 2012-05-07

  网络出版日期: 2013-10-30

基金资助

国家自然科学基金(40776085)

Research progress on functional genes involved in coral bleaching

  • HUANG Hui ,
  • XU Chang-you ,
  • YUAN Tao
Expand
  • 1. Key Lab of Marine Bio-resourses Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. National Experiment Station of Tropical Marine Biology, Sanya 572000, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2011-10-21

  Revised date: 2012-05-07

  Online published: 2013-10-30

摘要

造礁石珊瑚白化死亡现象日益频繁, 严重时会造成珊瑚礁退化。温度、光和环境化学毒物胁迫是导致造礁石珊瑚大量白化的重要原因, 而造礁石珊瑚白化机制假想模型认为造礁石珊瑚的关键功能基因参与并影响珊瑚白化过程。利用基因芯片等分子生物学技术研究表明关键功能基因的表达和调控状况与珊瑚白化死亡或恢复有密切关系。本文概括了该领域的重要研究进展, 并重点介绍了造礁石珊瑚的几个白化相关功能基因家族的研究状况, 包括温度相关基因家族、光辐射相关基因家族、细胞防御相关基因家族、Ca2+平衡相关基因家族和其他重要基因家族。目前, 我国珊瑚功能基因的研究仍处于探索阶段, 因此, 应该加强该领域的研究, 为造礁石珊瑚白化机制研究提供基础理论。

本文引用格式

黄晖 , 许昌有 , 袁涛 . 造礁石珊瑚白化相关功能基因的研究进展[J]. 热带海洋学报, 2013 , 32(4) : 43 -50 . DOI: 10.11978/j.issn.1009-5470.2013.04.007

Abstract

Coral reef bleaching appears frequently nowadays, and even leads to degradation of coral reefs. Thermal, light and environmental toxicant stress are the main causes of coral bleaching. A proposed model of coral bleaching suggests that some functional genes are involved in bleaching process. Micro-array analysis can detect functional genes that are crucial in bleaching. This article summarized the progress in the related area, and focused on introducing important function genes that are related to bleaching. These genes include temperature-related gene family, light radiation-related gene family, cellular defense gene family, Ca2+ regulated gene family, and other important genes. The research on coral bleaching in China is behindhand the world, and research using gene expression markers will help to expand basic theory of coral bleaching.

参考文献

[1]DOUGLAS A E. Coral bleaching-how and why?[J]. Mar Pollut Bull, 2003, 46(4): 385-392.
[2]GLEASON D F, WELLINGTON G M. Ultraviolet and coral bleaching[J]. Nature, 1993, 365(28): 836-838.
[3]BAIRD A H, MARSHALL P A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef[J]. Mar Ecol-Prog Ser, 2002, 247: 133-141.
[4]陈昭伦. 珊瑚白化:灭绝的锣声?乐观的演化适应?一个生物多样性观点[J]. 中央研究院周报, 2005, 1037: 1-3.
[5]GARDNER T A, COTE I M, GILL J A, et al. Long-term region-wide declines in Caribbean corals[J]. Science, 2003, 301(5635): 958-960.
[6]杨雅文, 陈昭伦. 珊瑚白化与共生藻奇异度的演化生态[J]. 生物科学, 2002, 45(1): 29-47.
[7]尹健强, 黄晖, 黄良民, 等. 雷州半岛灯楼角珊瑚礁海区的浮游植物[J]. 海洋通报, 2006, 25(2): 8-14.
[8]李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27(5): 2059-2069.
[9]BROWN B E. The significance of pollution in eliciting the 'bleaching' response in symbiotic cnidarians[J]. Int J Environ Pollut, 2000, 13(1-6): 392-415.
[10]SCHIEDEK D, SUNDELIN B, READMAN J W, et al. Interactions between climate change and contaminants[J]. Mar Pollut Bull, 2007, 54(12): 1845-1856.
[11]EDGE S, MORGAN M B, GLEASON D F, et al. Development of a coral cDNA array to examine gene expression profiles in exposed to environmental stress[J]. Mar Pollut Bull, 2005, 51(5-7): 507-524.
[12]JONES R J. Zooxanthellae loss as a bioassay for assessing stress in corals[J]. Mar Ecol-Prog Ser, 1997, 149(1-3): 163-171.
[13]李秀保, 黄晖, 符曲, 等. 鼻形鹿角珊瑚对不同温度的响应及白化研究[J]. 热带海洋学报, 2006, 25(6): 59-61.
[14]LEGGAT W, HOEGH-GULDBERG O, DOVE S, et al. Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals[J]. J Phycol, 2007, 43(5): 1010-1021.
[15]DOWNS C A, MUELLER E, PHILLIPS S, et al. A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress[J]. Mar Biotechnol, 2000, 2(6): 533-544.
[16]SMITH-KEUNE C, DOVE S. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral[J]. Mar Biotechnol, 2008, 10(2): 166-180.
[17]VENN A A, QUINN J, JONES R, et al. P-glycoprotein (multi-xenobiotic resistance) and heat shock protein gene expression in the reef coral Montastraea franksi in response to environmental toxicants[J]. Aquat Toxicol, 2009, 93(4): 188-195.
[18]MEYER E, AGLYAMOVA G V, WANG S, et al. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx[J]. Bmc Genomics, 2009, 10: 219.
[19]KORTSCHAK R D, SAMUEL G, SAINT R, et al. EST analysis of the Cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates[J]. Curr Biol, 2003, 13(24): 2190-2195.
[20]DESALVO M K, VOOLSTRA C R, SUNAGAWA S, et al. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata[J]. Mol Ecol, 2008, 17(17): 3952-3971.
[21]HOEGH-GULDBERG O. Climate change, coral bleaching and the future of the world's coral reefs[J]. Mar Freshwater Res, 1999, 50(8): 839-866.
[22]潘艳丽, 唐丹玲. 卫星遥感珊瑚礁白化概述[J]. 生态学报, 2009, 29(9): 5076-5080.
[23]HUGHES T P, BAIRD A H, BELLWOOD D R, et al. Climate change, human impacts, and the resilience of coral reefs[J]. Science, 2003, 301(5635): 929-933.
[24]BHAGOOLI R, HIDAKA M. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses Comp Biochem[J]. Phys A, 2004, 137(3): 547-555.
[25]DOUGLASA E. Coral bleaching-how and why? [J]Mar Poll Bull, 2003, 46: 385 392.
[26]LESSER M P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates[J]. Linnol Oceanogr, 1996, 41: 271-283.
[27]SMITH D J, SUGGETT D J, BAKER N R. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? [J]. Global Change Biol, 2005, 11: 1-11.
[28]LESSER M P. Oxidative stress causes coral bleaching during exposure to elevated temperatures[J]. Coral Reefs, 1997, 16: 187-192.
[29]SHINZATO C, SHOGUCHI E, KAWASHIMA T, et al. Using the Acropora digitifera genome to understand coral responses to environmental change[J]. Nature, 2011, 476 (7360): 320-323.
[30]练健生, 黄晖, 黄良民, 等. 三亚珊瑚礁及其生物多样性[M]. 北京: 海洋出版社, 2010: 18-24.
[31]邹仁林. 中国动物志: 腔肠动物门·珊瑚虫纲·石珊瑚目: 造礁石珊瑚[M]. 北京: 科学出版杜, 2001: 2-3.
[32]CSASZAR N B M, SENECA F O, VAN OPPEN M J H. Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress[J]. Mar Ecol-Prog Ser, 2009, 392: 93-102.
[33]ALIEVA N O, KONZEN K A, FIELD S F, et al. Diversity and Evolution of Coral Fluorescent Proteins[J]. Plos One, 2008, 3(7): e2680.
[34]SHICK J M. The continuity and intensity of ultraviolet irradiation affect the kinetics of biosynthesis, accumulation, and conversion of mycosporine-like amino acids (MAAS) in the coral Stylophora pistillata[J]. Limnol Oceanogr, 2004, 49(2): 442-458.
[35]SCHWARZ J A, BROKSTEIN P B, VOOLSTRA C, et al. Coral life history and symbiosis: Functional genomic resources for two reef building Caribbean corals, Acropora palmata and Montastraea faveolata[J]. Bmc Genomics, 2008, 9: 97.
[36]DESALVO M K, SUNAGAWA S, VOOLSTRA C R, et al. Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata[J]. Mar Ecol-Prog Ser, 2010, 402: 97-113.
[37]VOOLSTRA C R, SCHNETZER J, PESHKIN L, et al. Effects of temperature on gene expression in embryos of the coral Montastraea faveolata[J]. Bmc Genomics, 2009, 10: 627.
[38]SOUTER P, BAY L K, ANDREAKIS N, et al. A multilocus, temperature stress-related gene expression profile assay in Acropora millepora, a dominant reef-building coral[J]. Mol Ecol Resour. 2011, 11(2): 328-334.
[39]REYES-BERMUDEZ A, LIN Z Y, HAYWARD D C, et al. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora[J]. Bmc Evol Biol, 2009, 9: 178.
[40]SUNAGAWA S, DESALVO M K, VOOLSTRA C R, et al. Identification and Gene Expression Analysis of a Taxonomically Restricted Cysteine-Rich Protein Family in Reef-Building Corals[J]. Plos One, 2009, 4(3):e4865.
[41]HAYWARD D C, SAMUEL G, PONTYNEN P C, et al. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo[J]. P Natl Acad Sci USA, 2002, 99(12): 8106-8111.
[42]WATANABE T, NISHIDA M, WATANABE K, et al. Polymorphism in nucleotide sequence of mitochondrial intergenic region in scleractinian coral (Galaxea fascicularis)[J]. Mar Biotechnol, 2005, 7(1): 33-39.
[43]王国忠. 全球气候变化与珊瑚礁问题[J]. 海洋地质动态, 2004, 20(1): 8-13.
[44]WELLS J W. Scleractinia[M]// MOORE R C. Treatise on Invertebrate Palaeontology. Part F. Geological Society of America, 1956: 328-443.
[45]SHARP V A, BROWN B E, MILLER D. Heat shock protein (hsp 70) expression in the tropical reef coral Goniopora djiboutiensis[J]. J Therm Biol, 1997, 22(1): 11-19.
[46]COOPER T F, GILMOUR J P, FABRICIUS K E. Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes[J]. Coral Reefs, 2009, 28(3): 589-606.
[47]CARTER R W, SCHMALE M C, GIBBS P D L. Cloning of anthozoan fluorescent protein genes[J]. Comp Biochem Phys C, 2004, 138(3): 259-270.
[48]PALMER C V, ROTH M S, GATES R D. Red Fluorescent Protein Responsible for Pigmentation in Trematode-Infected Porites compressa Tissues[J]. Biol Bull-Us, 2009, 216(1): 68-74.
[49]SALIH A, LARKUM A, COX G, et al. Fluorescent pigments in corals are photoprotective[J]. Nature, 2000, 408(6814): 850-853.
[50]LESSER M P, BOU-ABDALLAH F, CHASTEEN N D. Quenching of superoxide radicals by green fluorescent protein[J]. Bba-Gen Subjects, 2006, 1760(11): 1690-1695.
[51]DOVE S, ORTIZ J C, ENRIQUEZ S, et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress[J]. Limnol Oceanogr, 2006, 51(2): 1149-1158.
[52]D'ANGELO C, DENZEL A, VOGT A, et al. Blue light regulation of host pigment in reef-building corals[J]. Mar Ecol-Prog Ser, 2008, 364: 97-106.
[53]余克服, 陈特固, 练健生, 等. 大亚湾扁脑珊瑚中重金属的年际变化及其海洋环境指示意义[J]. 第四纪研究, 2002, 22(3): 240-245.
[54]DEAN M, ANNILO T. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates[J]. Annu Rev Genom Hum G, 2005, 6: 124-142.
[55]JURANKA P F, ZASTAWNY R L, LING V. P-glycoprotein: multidrug-resistance and a superfamily of membrane- associated transport proteins[J]. FASEB J, 1989, 3(14): 2583-92.
[56]BARD S M. Multixenobiotic resistance as a cellular defense mechanism in aquatic organisms[J]. Aquat Toxicol, 2000, 48(4): 357-389.
[57]KURELEC B, LUCIC D, PIVCEVIC B, et al. Induction and Reversion of Multixenobiotic Resistance in the Marine Snail Monodonta-Turbinata [J]. Mar Biol, 1995, 124(2): 305-312.
[58]KURELEC B. Reversion of the Multixenobiotic Resistance Mechanism in Gills of a Marine Mussel Mytilus-Galloprovincialis by a Model Inhibitor and Environmental Modulators of P170-Glycoprotein [J]. Aquat Toxicol, 1995, 33(2): 93-103.
[59]DOWNS C A, FAUTH J E, ROBINSON C E, et al. Cellular diagnostics and coral health: Declining coral health in the Florida Keys[J]. Mar Pollut Bull, 2005, 51(5-7): 558-569.
[60]DOWNS C A, RICHMOND R H, MENDIOLA W J, et al. Cellular physiological effects of the MV Kyowa Violet fuel-oil spill on the hard coral, Porites lobata[J]. Environ Toxicol Chem, 2006, 25(12): 3171-3180.
[61]TAMBUTTE E, ALLEMAND D, MUELLER E, et al. A compartmental approach to the mechanism of calcification in hermatypic corals[J]. J Exp Biol, 1996, 199(5): 1029-1041.
[62]HAYAKAWA H, ANDOH T, WATANABE T. Precursor structure of egg proteins in the coral Galaxea fascicularis[J]. Biochem Bioph Res Co, 2006, 344(1): 173-180.
[63]HAYAKAWA H, NAKANO Y, ANDOH T, et al. Sex-dependent expression of mRNA encoding a major egg protein in the gonochoric coral Galaxea fascicularis[J]. Coral Reefs, 2005, 24(3): 488-494.
[64]WANG P X, LI Q Y. The South China Sea Paleoceanography and Sedimentology[M]. Berlin: Springer, 2009: 1-506.
[65]李淑, 余克服, 陈天然. 珊瑚共生虫黄藻密度结合卫星遥感分析2007年南沙群岛珊瑚热白化[J]. 科学通报, 2011, 56(10): 756-764.
[66]陈天然, 余克服, 施祺, 等. 大亚湾石珊瑚群落近25年的变化及其对2008年极端低温事件的响应[J]. 科学通报, 2009, 54(6): 812-820.
[67]李淑, 余克服, 陈天然, 等. 在细胞水平上对高温珊瑚白化的初步研究[J]. 热带海洋学报,2011, 30(2): 33-38.
[68]HUANG H, DONG Z J, ZHANG J B, et al. Restriction fragment length polymorphism analysis of large subunit rDNA of symbiotic dinoflagellates from scleractinian corals in the Zhubi Coral Reef of the Nansha Islands[J]. J Integr Plant Biol, 2006, 48(2): 148-152.
[69]黄洁英, 黄晖, 张浴阳, 等. 膨胀蔷薇珊瑚与壮实鹿角珊瑚的胚胎和幼虫发育[J]. 热带海洋学报, 2011, 30 (2) : 33-38.
[70]REYES-BERMUDEZ A, DESALVO M K, VOOLSTRA C R, et al. Gene expression microarray analysis encompassing metamorphosis and the onset of calcification in the scleractinian coral Montastraea faveolata [J]. Mar Genom, 2009, 2(3-4): 149-159.
[71]周国伟, 黄晖, 喻子牛, 等. 造礁石珊瑚与其共生藻(Symbiodinium)共生研究进展[J]. 生态学报, 2009, 27(5): 4397-4407.
[72]李秀保, 黄晖, 练健生, 等. 珊瑚及共生藻在白化过程中的适应机制研究进展[J]. 生态学报, 2007, 29(8): 1217-1225.
[73]YU K F, ZHAO J X, LIU T S. High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum[J]. Earth Planet Sci Lett, 2004, 224: 143-155.
[74]GOREAU T F. Mass expulsion of zooxanthellae from Jamaican Reef communities after hurricane Flora[J]. Science, 1964, 145: 383-386.
[75]KUSHMARO A, LOYA Y, FINE M. Bacterial infection and coral bleaching[J]. Nature, 1996, 380: 396.
文章导航

/