根据2008年1、5、8和11月间对铁山港红树林生态区进行的4个季度月调查取得的数据资料, 首次从水体营养盐的时空变化规律入手, 探讨了营养盐水平、结构与环境、生物因子的相互关系, 初步揭示了营养盐限制因子的成因和规律。结果表明, 研究海区N、P、Si营养盐含量表现为Si、N含量较高、P含量较低, 季节变化多呈春、夏季高, 秋、冬季低的特征, 陆源输入、养殖排废和红树林区凋落物的释放补充对海区营养盐含量和结构的变化起关键作用。陆源输入对Si的影响最大, P次之, 对N的影响最小。营养盐与环境因子之间的关系中, 以Si出现显著性的几率最高(23次), P次之(19次), N相对较低(18次)。但N、P的含量变化对海区的初级生产力和浮游动、植物生物量的影响比Si明显, 其中春季突出了N、P的影响作用, 秋季则以Si影响为主。P为该海区营养盐的限制因子, N呈富足状态, 而Si是最丰富的营养盐。海区的营养水平为春季显著富营养状态, 夏季中营养状态, 秋、冬季均处于贫营养状态。
Based on the data from the mangrove areas of Tieshan Bay that were collected during investigations conducted in January, May, August, and November 2008, the authors analyzed temporal and spatial variation of the nutrition in the water, and the relationship of nutritional level and distributions with environment and biological factors., The results roughly disclosed nutrient-limiting factors and their causes. The results showed Si and N concentrations were relatively high, and P concentration was low. Seasonal variation characteristics of nutritions include nutrients were generally high in spring and low in autumn and winter. Nutrition concentration and distribution were severely influenced by terrestrial input, aquaculture wastewater and litter-fall of mangrove. Terrestrial input impacted Si most heavily, less on P, and the least on N. Significance relationships were found between Si and environmental factors (23 times), between P and environmental factors (19 times), and between N and environmental factors (18 times). Primary productivity, zooplankton biomass and phytoplankton biomass were mostly influenced by N and P in spring, and by Si in autumn. P was a limiting factor in this area, N is sufficient, and Si is the highest. Nutritional level of water is eutrophic in spring, mesotrophic in summer, and oligotrophic in autumn and winter.
[1]邹景忠, 董丽萍, 秦保平. 渤海湾富营养化和赤潮问题的初步探讨[J]. 海洋环境科学, 1983, 2(2): 41-55.
[2]MARCHETTI R, PROVINI A, CROSA G. Nutrient load carried by the River Po into the Adriatic Sea, 1968-1987[J]. Marine Pollution Bulletin, 1989, 20: 168-172.
[3]DORTCH Q, PACKARD T T. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems[J]. Deep-Sea Research, 1989, 36(2A): 223-240.
[4]TURNER R E, RABALAIS N N. Change in Mississippi River water quality the century-implications for coastal food webs[J]. Bioscience, 1991, 41: 140-147.
[5]暨卫东, 黄尚高. 台湾海峡西部营养盐变化特征Ⅳ水系混合及浮游植物摄取对Si∶N∶P比值的影响[J]. 海洋学报, 1992, 14(2): 53-62.
[6]JUSTIC D, RABALAIS N N, TURNER R E. Stoichiometric nutrient balance and origin of coastal eutrophication[J]. Marine Pollution Bulletin, 1995, 30(1): 41-46.
[7]杨东方, 张经, 陈豫, 等. 营养盐限制的唯一因子探究[J].海洋科学, 2001, 25(12): 39-42.
[8]沈志良. 胶州湾营养盐结构的长期变化及其对生态环境的影响[J]. 海洋与湖沼, 2002, 33(3): 322-329.
[9]孙丕喜, 王宗灵, 战闰, 等.胶州湾海水中无机氮的分布与富营养化研究[J]. 海洋科学进展, 2005, 23(4): 466-471.
[10]杨东方, 高振会, 马媛, 等. 胶州湾环境变化对海洋生物资源的影响[J]. 海洋环境科学, 2006, 25 (4): 39-42.
[11]张继红, 王魏, 蒋增杰, 等. 獐子岛养殖海区氮、磷的分布特征[J]. 渔业科学进展, 2009, 30(6): 88-95.
[12]张景平, 黄小平, 江志坚, 等. 2006~2007年珠江口富营养化水平的季节变化及其与环境因子的关系[J]. 海洋学报, 2009, 31(3): 113-120.
[13]池缔平, 郭翔宇, 钟仕花. 近5年来深圳大鹏湾南澳赤潮监控区营养盐变化及其结构特征[J]. 海洋环境科学, 2010, 29(4): 564-569.
[14]陈慧敏, 孙承兴, 仵彦卿. 近23年来长江口及其邻近海域营养盐结构的变化趋势和影响因素分析[J]. 海洋环境科学, 2011, 30(4): 551-553.
[15]林鹏. 中国红树林研究进展[J]. 厦门大学学报: 自然科学版, 2001, 40(2): 592-603.
[16]张乔民, 陈永福. 海南三亚河红树凋落物产量与季变化研究[J]. 生态学报, 2003, 23(10): 1977-1893.
[17]郑逢中, 林鹏, 卢昌义, 等. 广西英罗湾红海榄林凋落物动态及其能流[J]. 厦门大学学报: 自然科学版, 1996, 35(3): 417-423.
[18]尹毅, 林鹏. 广西英罗湾红海榄群落凋落物研究[J]. 广西植物, 1992, 12(4): 359-363.
[19]戴纪翠, 倪晋仁. 红树林湿地环境污染地球化学的研究评述[J].海洋环境科学, 2009, 28 (6): 779-784.
[20]张乔民, 隋淑珍, 张叶春, 等. 红树林宜林海洋环境指标研究[J]. 生态学报, 2001, 21(9): 1427-1437.
[21]广西红树林研究中心. 广西红树林生态系统调查研究报告[R]. 北海: 广西红树林研究中心, 2010: 1-56.
[22]国家技术监督局. GB17378.4—2007 海洋监测规范: 第四部分: 海水分析[S]. 北京:中国标准出版社, 2007: 1-162
[23]广西红树林研究中心. 广西重点生态区综合调查 生物生态调查报告[R]. 北海: 广西红树林研究中心, 2010: 1-100.
[24]韦蔓新, 赖廷和, 何本茂. 铁山港湾水质状况发展趋势[J]. 海洋通报, 2002, 21(5): 69-74.