海洋水文学

应用GHSOM网络分析南海北部表层环流模态与黑潮入侵*

  • 徐晓华 ,
  • 廖光洪 ,
  • 杨成浩 ,
  • 袁耀初 ,
  • 黄韦艮
展开
  • 1. 中国海洋大学 海洋环境学院, 山东 青岛 266100; 2. 国家海洋局第二海洋研究所 卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012
徐晓华(1978—), 女, 四川省眉山市人, 助理研究员, 从事海洋数据分析与海洋动力学研究。E-mail: xiaohuaxu@sio.org.cn

收稿日期: 2011-10-29

  修回日期: 2013-04-27

  网络出版日期: 2013-11-21

基金资助

全球变化研究国家重大科学研究计划(2012CB955601)

Variability of surfer circulation and Kuroshio intrusion in northern South China Sea using growing hierarchical self-organizing maps

  • XU Xiao-hua ,
  • LIAO Guang-hong ,
  • YANG Cheng-hao ,
  • YUAN Yao-chu ,
  • HUANG Wei-gen
Expand
  • 1. College of Physical and Environmental Oceanography, Ocean University of China, Qingdao 266100, China; 2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China

Received date: 2011-10-29

  Revised date: 2013-04-27

  Online published: 2013-11-21

摘要

基于1992年10月至2009年11月卫星观测的海表高度(SSH)时间序列数据, 应用增长型分级自组织映射(GHSOM)人工神经网络方法研究南海北部和西太平洋SSH和中尺度涡旋的变化, 识别出该海域SSH的季节和年际变化信号。分析表明, 流经吕宋海峡的黑潮分支在冷季入侵南海北部, 同时在吕宋岛西北海域出现一个强烈的气旋式涡旋, 表层黑潮的入侵与跨过吕宋海峡南北的经向压力梯度密切相关。黑潮的非入侵事件主要出现在暖季。春秋季节作为两个事件的过渡期, 环流结构复杂, 由GHSOM的第2层特征图进一步进行分类识别。黑潮入侵事件和非入侵事件发生的百分比分别为24.57%和27.53%, 过渡模态的百分比为47.87%。当入侵南海事件发生时, 南海北部表层环流流态相对简单, 主要为气旋环流控制南海北部, 吕宋海峡表层海流是否入侵南海, 与南海北部中尺度涡旋特别是吕宋岛西北的气旋式涡的变化关系密切; 反之, 在非入侵事件发生时, 南海北部出现多涡结构, 环流流态复杂, 表明吕宋海峡海流入侵南海对南海北部环流也有重要调整作用。除季节尺度变化外, 年际时间尺度变化信号也十分显著。在1994—1995、1997—1998和2002—2003年期间, 表层黑潮入侵南海北部的事件要显著多于其他年份, 然而入侵事件在1998—2001年和2006—2009年时间段明显减少, 非入侵事件增加。应用欧氏距离定义的模态2的时间发展序列与Niño3.4指数序列延迟相关。

本文引用格式

徐晓华 , 廖光洪 , 杨成浩 , 袁耀初 , 黄韦艮 . 应用GHSOM网络分析南海北部表层环流模态与黑潮入侵*[J]. 热带海洋学报, 2013 , 32(5) : 29 -41 . DOI: 10.11978/j.issn.1009-5470.2013.05.005

Abstract

Sea surface height (SSH) variations and eddies on both sides of the Luzon Strait are examined from the merged satellite altimeter data from October 1992 to November 2009. The neural network analyses based on the growing hierarchical self-organizing map (GHSOM) are used to extract feature patterns of the circulation variability. The evolution of the characteristic circulation patterns with time is investigated. The seasonal and inter-annual variations of the sea-surface circulation are identified. The analysis indicates a branch of the Kuroshio intrudes into the northern South China Sea (NSCS) during the cold season, accompanied by a stronger cyclonic eddy northwest of Luzon Island. That is closely related to the meridional pressure gradient cross the Luzon Strait. The Kuroshio does not intrude remarkably in the warm season. The spring and autumn, as transitional periods, have relatively complicated circulation structures, which can be explained by more GHSOM arrays in the second layer. The prominent Kuroshio intrusion and non-intrusion patterns denote 24.57% and 27.53% of all SSH variation, respectively. The transitional pattern sums up to 47.87%. The seasonal variation is modulated by the inter-annual variation. The events that the surface Kuroshio intruded into the NSCS in 1994-1995, 1997-1998 and 2002-2003 are much more frequent than the other periods, and the frequency of the events decreased remarkably from 1998 to 2001 and from 2006 to 2009, with no intrusion events were prominent in these two periods. The time series of non-intrusion pattern is best correlated with the Niño3.4 index, when it lags the Niño3.4 index by one month.

参考文献

[1]WYRTKI K. Scientific results of marine investigation of the South China Sea and Gulf of Thailand 1959-1961 [R]//NAGA Report 2. San Diego: Scripps Institution of Oceanography, 1961: 225.
[2]NITANI H. Beginning of the Kuroshio[M]//STOMMEL H, YOSHID A K. Kuroshio: Its physical aspects. Seattle: University of Washington Press, 1972: 129-163.
[3]黄企洲. 巴士海峡的海洋水文状况[G]//南海海洋科学集刊(6). 北京: 科学出版社, 1984: 54-66.
[4]刘秦玉, 杨海军, 李薇, 等.吕宋海峡纬向海流及质量输送[J]. 海洋学报, 2000, 22(2): 1-8.
[5]许建平, 苏纪兰. 黑潮水入侵南海的水文分析Ⅱ.1994年8—9月期间的观测结果[J]. 热带海洋, 1997, 16(2): 1-23.
[6]SHAW P T. The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea [J]. J Geophys Res, 1991, 96: 821-827.
[7]FANG GUOHONG, FANG WENDONG, FANG YUE, et al. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanogr Taiwan, 1998, 37: 1-16.
[8]XU JIANPING, SU JILAN. Hydrological analysis of Kuroshio water intrusion into the South China Sea[J]. Acta Oceanologica Sinica, 2000, 19(3): 1-21.
[9]QU TANGDONG, MITISUDERA H, YAMAGATA T. Intrusion of the North Pacific waters into the South China Sea[J]. Journal of Geophysical Research, 2000, 105(C3): 6415-6424.
[10]LUCA R C, PEARN P N, LEE D-K. Observations of Inflow of Philippine sea surface water into the South China Sea through the Luzon Strait[J]. Journal of Physical Oceanogpaphy, 2004, 34: 113-121.
[11]中国科学院南海海海洋研究所. 南海海区综合调查研究报告:第二卷[R]. 北京: 科学出版社, 1985: 432.
[12]Chu T Y. A study on the water exchange between Pacific Ocean and the South China Sea[J]. Acta Oceanographic Taiwanica, 1972, 2: 11-24.
[13]METZGER E J, URLBURT H E. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean[J]. J Geophys Res, 1996, 101(C5): 12331-12352.
[14]QU TANGDONG, DU YAN, MEYERS G, et al. Connecting the tropical Pacific with Indian Ocean through South China Sea[J]. Geophys Res Lett, 2005, 32, L24609. doi: 10.1029/ 2005GL024698.
[15]METZGER E J, HURLBURT H E. The importance high horizontal resolution and accurate coastline geometry in modeling South China Sea inflow[J]. Geophys Res Lett, 2001, 28(6): 1059-1062.
[16]METZGER E J, HURLBURT H E. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. J Phys Oceanogr, 2001, 31: 1712-1732.
[17]QU TANGDONG, Kim Y Y, YAREMCHUK M. Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China? [J]. Journal of Climate, 2004, 17: 3644-3657.
[18]XUE HUIIE, CHAI FEI, PETTIGREW N, et al, Kuroshio intrusion and the circulation in the South China Sea[J]. J Geophys Res, 2004, 109, C01017. doi: 10.1029/2002JC001724.
[19]YUAN DONGLIANG, HAN WEIQING, HU DUNXIN. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. J Geophys Res, 2006, 111, C11007. doi: 10.1029/2005JC003412.
[20]HO C R, KUO N J, ZHENG Q, et al. Dynamically active areas in the South China Sea detected from TOPEX/POSEIDON satellite altimeter data[J]. Remote Sensing of Environment, 2000, 71: 320-328.
[21]WANG GUIHUA, SU JILAN, CHU P C. Mesoscale eddies in the South China Sea detected from altimeter data[J]. Geophys Res Lett, 2003, 30. doi: 10.1029/2003GL018532.
[22]YANG, HAIJUN, LIU QINYU. Forced Rossby wave in the northern South China Sea[J]. Deep-Sea Res. Ⅰ, 2003, 50: 917-926.
[23]LIU QINYU, ARATA K, SU JILAN. Recent progress in studies of the South China Sea circulation[J]. Journal of Oceanography, 2008, 64 (5): 753-762.
[24]徐晓华, 廖光洪, 许东峰. 西北太平洋反气旋涡的Argos浮标检测结果分析[J]. 海洋学研究, 2010, 28(4): 1-13.
[25]李燕初, 李立, 靖春生, 等. 南海东北部海域海面高度的时空变化特征[J]. 科学通报, 2004, 49(7): 702-709.
[26]RIO M H, HERNANDEZ. A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model[J]. J Geophys Res, 2004, 109, C12032. doi: 10.1029/2003JC002226.
[27]LE TRAON P Y, FAUGÈRE Y, HERNANDEZ F, et al. Can we merge GEOSAT Follow-On with TOPEX/POSEIDON and ERS-2 for an improved description of the ocean circulation?[J]. J Atmos Oceanic Technol, 2003, 20: 889-895.
[28]KOHONEN T. Self-organized information of topologically correct features maps[J]. Biol Cybernetics, 1982, 43: 59-69.
[29]MALMGREN B A, WINTER A. Climate zonation in Puerto Rico based on principal components analysis and an artificial neural network[J]. J Clim, 1999, 12: 977-985.
[30]HEWITSON B C, CRANE R G. Self-organizing maps: Applications to synoptic climatology[J]. Clim Res, 2002, 22: 13-26.
[31]LIU YONGGANG, WEISBERG R H. Patterns of ocean current variability on the West Florida Shelf using the self-organizing map[J]. J Geophys Res, 2005 110, C06003. doi: 10.1029/2004JC002786.
[32]LIU YONGGANG, WEISBERG R H, HE RUOYING. Sea surface temperature patterns on the West Florida Shelf using the growing hierarchical self-organizing maps[J]. J Atmos Oceanic Tech, 2006, 23(2): 325-338.
[33]KOHONEN T. Self-organizing Maps [M]. Berlin: Springer-Verlag, 2001: 1-511.
[34]RAUBER A, MERKL D, DITTENBACH M. The growing hierarchical Self-Organizing Map: Exploratory analysis of high-dimensional data[J]. IEEE Trans Neural Networks, 2002, 13: 1331-1341.
[35]YANG Y, LIU C-T, HU J-H, et al. Taiwan Current (Kuroshio) and impinging eddies[J]. Journal of Oceanography, 1999, 55: 609-617.
[36]ZHANG D, LEE T N, JOHNS W E, et al. The Kuroshio east of Taiwan: Modes of variability and relationship to interior ocean mesoscale eddies[J]. J Phys Oceanogr, 2001, 31: 1054-1074.
[37]CHOW C-H, HU J-H, CENTURIONI L R, et al. Mesoscale Dongsha cyclonic eddy in the northern South China Sea by drifter and satellite observations[J]. J Geophys Res, 2008, 113, C04018. doi: 10.1029/2007JC004542.
[38]LIAO GUANGHONG, YUAN YAOCHU, XU XIAOHUA. Diagnostic calculation of the circulation in the South China Sea during the summer 1998[J]. Journal of Oceanography, 2007, 63(2): 161-178.
[39]WANG DONGXIAO, LIU QINYU, HUANG RUIXIN, et al. Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product[J]. Geophys Res Lett, 2006, 33, L14605. doi: 10.1029/2006GL026316.
文章导航

/