利用上海小洋山多年自动气象站数据和海温再分析资料及洋山浮标海温等资料, 以风向、风速、气温、气海温差和相对湿度等要素作为预报海雾的因子。首先将各预报因子按其阈值不同进行分区组合, 每一个分区组合均对应一类海雾发生时的条件, 再根据每一时刻的各预报因子值将全部历史样本分别归入各分区中, 然后根据预报对象的各因子判断其所属分区, 利用该分区的历史样本建立该次过程的能见度预报方程, 最后对这一方法分别进行了后报检验和个例预报。该方法克服了传统的单一线性回归方程不能描述预报因子与能见度的非线性关系和预报方程需设定临界值的问题。不同类型的雾用不同的方程进行预报, 使得方程更具有物理意义。检验结果表明, 该方法对于具有充足相似历史样本的海雾事件有较好的预报效果; 随着不同类型海雾历史样本的增加, 预报效果能得到进一步提高。
Statistical equations for sea-fog forecast were established using the Yangshan automatic weather station data, sea surface temperature of reanalysis data, and buoy temperature data over Yangshan Sea area in recent years. Many elements, including wind direction, wind speed, air temperature, temperature difference between air and sea surface, and relative humidity were selected as factors for sea-fog forecast. For establishing the forecast equations, firstly each of the forecast factors was divided into several ranges, which were then crossly combined to form a number of groups. Each group corresponds to a kind of conditions for generating and sustaining sea fog. Secondly, based on their historical sample groups, visibility forecast equations were established. This method can overcome the weakness that traditional linear regression equations can’t describe the nonlinear relationship between forecast factors and visibility, and the weakness that critical thresholds must be set in traditional regression equations. In this study, the sea fog in different conditions can be forecasted by more applicable equations, which have physical meanings. The results show that using this method good forecast can be acquired for sea-fog events with sufficient historical samples. With accumulation of sea-fog samples in different conditions, sea-fog forecast can be further improved.
[1]吕洪伟, 丁海亮.长江口和东海海域的恶劣天气及安全航行对策[J].航海技术, 2008, (2): 22-24
[2]洪汉波.船舶雾中航行安全新探[J].浙江国际海运职业技术学院学报, 2007, 3(2): 5-8.
[3]谷国传, 胡方西, 李兴华, 等.长江口地区的雾及其河口锋对海雾的影响[J].华东师范大学学报: 自然科学版, 1993, 4(4): 59-71.
[4]张苏平, 鲍献文.近十年中国海雾研究进展[J].中国海洋大学学报, 2008, 38(3): 359-366.
[5]黄宁立, 杨露华.上海地区雾的诊断分析及其数值产品的释用[C]//天气预报技术文集. 北京: 气象出版社, 2004: 10-16.
[6]周发琇, 刘龙太.海雾[J].山东海洋学院学报, 1986, (1): 114-131.
[7]虞兆国, 杨铁性, 朱永堤.上海市雾的自动监测、预报、服务系统[C]//城市气象服务科学讨论会学术论文集. 北京: 中国气象学会, 2001: 47-50.
[8]HUANG JIAN, ZHOU FAXIU. The cooling and moistening effect in the formation of sea fog in Yellow Sea [J]. Acta Oceanol Sin, 2006, 25(2): 49-62.
[9]黄健, 黄辉军, 黄敏辉, 等.广东沿岸海雾决策树预报模型[J].应用气象学报, 2011, 22(1): 107-114.
[10]黄健, 王斌, 周发琇, 等.华南沿海暖海雾过程中的湍流热量交换特征[J].大气科学, 2010, 34(4): 715-725.
[11]HUANG JIAN, WANG XIN, ZHOU WEN, et al. The characteristics of sea fog with different airflow over the Huanghai Sea in boreal spring [J]. Acta Oceanol Sin, 2010, 29(4): 3-12.
[12]黄健, 吴兑, 黄敏辉, 等.1954—2004 年珠江三角洲大气能见度变化趋势[J].应用气象学报, 2008, 19(1): 61-70.
[13]黄健, 刘作挺, 黄敏辉, 等.珠江三角洲区域大气输送和扩散的季节特征[J].应用气象学报, 2010, 21(6): 698-708.
[14]王彬华.海雾[M].北京: 海洋出版社, 1983: 170-232.
[15]于润玲, 王亚男, 李永平.黄海和东海海雾短期客观预报业务系统[J].大气科学研究与应用, 2007, (2): 28-37.
[16]黄辉军, 黄健, 刘春霞, 等.用GRAPES模式输出变量因子做广州沿海海雾预报[J].热带气象学报, 2010, 26(1): 31-39.
[17]黄嘉佑. 气象统计分析与预报方法[M].北京: 气象出版社, 2004: 291-294.
[18]贺皓, 姜创业, 徐旭然.利用MM5模式输出产品制作雾的客观预报[J].气象, 2002, 28(9): 41-43.
[19]周发琇.海雾的水文气象特征[J].海洋预报, 1988, 5(4): 84-94.
[20]周发琇.海雾预报[J].海洋预报, 1986, 6(4): 71-78.
[21]郭达烽, 许爱华, 肖安.多级相似作温度精细化预报初探[J].江西气象科技, 2005, 28(3): 23-26.
[22]陈焱, 沈伟.利用ECMWF数值产品作24—72小时暴雨预报的动力相似方法[G]//暴雨业务预报方法和技术研究. 北京: 气象出版社, 1995: 66-71.
[23]阳向荣, 郭前锋, 章立标, 等.基于加权回归的大雾预报技术研究[C]//第六届长三角气象科技论坛文集. 杭州: 浙江省气象学会, 2009: 529-533.