海洋生物学

舌鳎亚科Cynoglossinae鱼类基于COI条形码的 系统发育关系

  • 苗宪广 ,
  • 江金霞 ,
  • 时伟 ,
  • 王忠明 ,
  • 王淑英 ,
  • 孔晓瑜
展开
  • 1. 中国科学院南海海洋研究所海洋生物资源可持续利用重点实验室, 广东 广州 510301;; 2. 中国科学院大学, 北京 100049
苗宪广(1985—), 男, 山东省菏泽市人, 硕士, 从事鱼类系统学与分子进化研究。E-mail: miaoxianguang2008@163.com

收稿日期: 2012-04-21

  修回日期: 2012-05-29

  网络出版日期: 2013-11-21

基金资助

国家自然科学基金项目(30870283、31071890)

Phylogenetic relationship of Cynoglossinae based on COI barcoding marker

  • MIAO Xian-guang ,
  • JIANG Jin-xia ,
  • SHI Wei ,
  • WANG Zhong-ming ,
  • WANG Shu-ying ,
  • KONG Xiao-yu
Expand
  • 1. Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;; 2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-04-21

  Revised date: 2012-05-29

  Online published: 2013-11-21

摘要

以线粒体细胞色素氧化酶辅酶I (COI)条形码为分子标记, 利用最大似然法和贝叶斯推断构建了分子系统发育树, 对鲽形目Pleuronectiformes舌鳎亚科 Cynoglossinae鱼类进行系统发育分析, 结果表明所研究的28种舌鳎亚科鱼类形成了单系群, 然后和无线鳎亚科Symphurinae鱼类形成稳定的姐妹群关系。所有须鳎属Paraplagusia种类聚成一支, 形成了舌鳎鱼类晚期一个比较特化的类群; 舌鳎属Cynoglossus鱼类并没有形成一个单独的分支, 分成了8个主要类群。 舌鳎属的这种分支结果与按照侧线及鼻孔数目特征进行分类的结果差异较大, 但是和Menon所划分的部分种组(group)的结果相近, 即canariensis、heterolepis、arel、cynoglossus 4个种组的种类划分和本研究的结果基本一致, 但kopsii 种组的种类组成则存有较大的差异。同时, K2P遗传距离分析的结果表明, 舌鳎属内的种类已分化形成了不同的类群, 有些类群之间已超出了亚属级分化, 因此分类关系可能被低估了。同时遗传距离分析的结果支持长吻红舌鳎Cynoglossus lighti为短吻红舌鳎C. joyneri、紫斑舌鳎C. purpureomaculatus为短吻三线舌鳎C. abbreviatus的同物异名。

本文引用格式

苗宪广 , 江金霞 , 时伟 , 王忠明 , 王淑英 , 孔晓瑜 . 舌鳎亚科Cynoglossinae鱼类基于COI条形码的 系统发育关系[J]. 热带海洋学报, 2013 , 32(5) : 85 -92 . DOI: 10.11978/j.issn.1009-5470.2013.05.012

Abstract

Based on cytochrome oxidase subunit I (COI) barcoding marker of 33 flatfishes in the subfamily Cynoglossinae of Pleuronectiformes, the molecular phylogenetic trees were constructed by maximum likelihood and Bayesian inference method for the Cynoglossusphylogenetic analysis. The results showed that fishes of Cynoglossinae are one monophyletic group, which has a stable sister-group relationship with Symphurinae. In the taxa of this study, fishes of Paraplagusiaclustered into a shallow branch, forming a late specialization group of Tongue soles. The genus Cynoglossuswas divided into eight main branches. Species composition of these eight branches differs from that in the classification system based mainly on morphological characters, including numbers of lateral lines and nostrils. The species in four branches were similar to four groups (canariensis, heterolepis, arel, and cynoglossus) out of the six from Menon’s system based on the morphological characteristics, while the kopsii group showed a great difference in branches classification. In addition, the K2P genetic distances among the eight branches of Cynoglossuswere bigger than those in Paraplagusiasubgenus, which indicates a further split among species or subgenus. The data of K2P genetic distance analysis also revealed that the Cynoglossus lightiNorman is a junior synonym of Cynoglossus joneriGünther, and that Cynoglossus purpureomaculatusRegan is a junior synonym of Cynoglossus abbreviatus(Gray).

参考文献

[1]李思忠, 王惠民.中国动物志: 硬骨鱼纲. 鲽形目[M]. 北京: 科学出版社: 1995: 325-334.
[2]CHAPLEAU F. Pleuronectiform relationships: A cladistic reassessment [J]. Bull Mar Sci, 1993, 52(1): 516-540.
[3]MENON A G K. A systematic monograph of the tongue soles of the genus Cynoglossus Hamilton-Buchanan (Pisces, Cynoglossidae) [M]. Washington: Smithsonian Institution Press, 1977: 16-25.
[4]NELSON J S. Fishes of the world [M]. 4th ed. New York: John Wiley Inc, 2006: 442-451.
[5]MUNROE T A. Family Cynoglossidae[M]. CARPENTER K E, NIEM V H. The living marine resources of the Western Central Pacific. Rome: FAO Library, 2001: 3890-3901.
[6]周立石.鳎亚目鱼类系统学关系及带纹条鳎线粒体DNA控制区结构的初步研究[D]. 青岛; 中国海洋大学: 2005: 27-39.
[7]徐晖, 李军, 孔晓瑜, 等. 6种舌鳎亚科鱼类ITS1序列长度多态性及系统分析[J]. 海洋与湖沼, 2008, 39(1): 35-41.
[8]柳淑芳, 刘进贤, 庄志猛, 等.舌鳎亚科鱼类单系起源和同种异名的线粒体DNA证据[J]. 生物多样性, 2010, 18(3): 275-282.
[9]FOLMER O, BLACK M, HOEH W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates [J]. Mol Mar Biol Biotechnol, 1994, 3(5): 294-299.
[10]HALL T A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nucleic Acids Symposium Series, 1999, 41: 95-98.
[11]THOMPSON J D, GIBSON T J, PLEWNIAK F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res, 1997, 25(24): 4876-4882.
[12]XIA X, XIE Z. DAMBE: Software package for data analysis in molecular biology and evolution [J]. J Hered, 2001, 92(4): 371-373.
[13]GUINDON S, GASCUEL O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood [J]. Syst Biol, 2003, 52(5): 696-704.
[14]POSADA D, CRANDALL K A. MODELTEST: Testing the model of DNA substitution [J]. Bioinformatics, 1998, 14(9): 817-818.
[15]RONQUIST F, HUELSENBECK J P. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 2003, 19(12): 1572-1574.
[16]NYLANDER J, CHRISTER E, MARI K. A test of monophyly of the gutless Phallodrilinae (Oligochaeta, Tubificidae) and the use of a 573-bp region of the mitochondrial cytochrome oxidase I gene in analysis of annelid phylogeny [J]. Zool Scr, 1999, 28(3-4): 305-313.
[17]NYLANDER J A, WILGENBUSCH J C, WARREN D L, et al. AWTY (are we there yet?): A system for graphical exploration of MCMC convergence in Bayesian phylogenetics [J]. Bioinformatics, 2008, 24(4): 581-583.
[18]TAMURA K, DUDLEY J, NEI M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol, 2007, 24(8): 1596-1599.
[19]KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide-sequences [J]. J Mol Evol, 1980, 16(2): 111-120.
文章导航

/