海洋生物学

热带风暴“天鹰”对南海西部浮游植物叶绿素浓度的影响*

  • 赵辉 ,
  • 张书文 ,
  • 侯一筠 ,
  • 谢玲玲 ,
  • 曹瑞雪
展开
  • 1. 广东海洋大学, 广东省陆架及深远海气候、资源与环境重点实验室, 广东 湛江 524088; 2. 中国科学院海洋研究所, 山东 青岛 266071
赵辉(1978—), 男, 河南省新蔡县人, 博士, 副研究员, 主要从事海洋生态与环境研究。 E-mail: huizhao1978@163.com

收稿日期: 2011-12-28

  修回日期: 2012-10-04

  网络出版日期: 2013-11-21

基金资助

国家自然科学基金项目(41006070、41176011、U1133001、U0933001、41106012)

Influence of Tropical Storm Washi on phytoplankton chlorophyll-a in the western South China Sea

  • ZHAO Hui ,
  • ZHANG Shu-wen ,
  • HOU Yi-jun ,
  • XIE Ling-ling ,
  • CAO Rui-xue
Expand
  • 1. Key Laboratory of Continents-Deep Sea Climate, Sources and Environments, Guangdong Ocean University, Zhanjiang 524088, China; 2. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

Received date: 2011-12-28

  Revised date: 2012-10-04

  Online published: 2013-11-21

摘要

南海是著名的寡营养盐低生产力区, 同时也是热带气旋频发的海域, 强的热带气旋通常会给海洋上层带来强烈的扰动, 可能引起营养盐的卷入并引起海洋上层浮游植物的急剧增加。由于移动速度较快的弱台风及热带气旋对深水海域生态系统的影响通常较为有限, 以往相关的研究通常关注强度较强、移动较慢的台风对深水海区生态系统的影响。文章研究了一个强度较弱、移动较快的跨陆架区热带风暴“天鹰”对陆架区浮游植物的影响, 通过对比强风事件前后风场及背景环境要素的变化特征, 探讨了这种弱热带气旋事件对陆架区海洋浮游植物的可能贡献。研究结果表明, 2005年7月“天鹰”形成前南海西北部夏季叶绿素浓度通常较低(<0.12mg·m-3), 气旋过境后浮游植物叶绿素浓度显著增加(>0.14mg·m-3), 平均大约增加33%。这种叶绿素浓度短期迅速增加与同期风场的变化有关。对强风事件期间垂向温度、声学多普勒海流剖面(ADCP)数据以及营养盐水平分布的分析表明, 短暂的强风事件在营养盐跃层较浅的陆架区能导致较强的卷吸混合及惯性振荡流, 诱发生源物质由下至上的输送, 以及风暴引起的强降水在有利流向作用下将营养物质由近到远的输运, 导致海南岛东南部海域浮游植物的迅速增加。

本文引用格式

赵辉 , 张书文 , 侯一筠 , 谢玲玲 , 曹瑞雪 . 热带风暴“天鹰”对南海西部浮游植物叶绿素浓度的影响*[J]. 热带海洋学报, 2013 , 32(5) : 99 -106 . DOI: 10.11978/j.issn.1009-5470.2013.05.014

Abstract

The water in the South China Sea (SCS) belongs to tropical oligotrophic type with low primary productivity. This SCS is frequently affected by tropical cyclones. Strong tropical cyclones can trigger violent disturbances in the upper ocean, bringing nutrients into the surface layer, which increases phytoplankton primary production. Due to limited influence of fast-moving, weak cyclones on offshore deep waters and related marine ecosystems, previous studies focused generally on contribution of strong or slow-moving typhoons on marine ecosystems in the SCS. The present study analyzes increase in chlorophyll after a fast-moving, weak tropical storm in the continental shelf, investigating possible influence of a short-lived tropical storm using wind, currents, and other oceanographic data on phytoplankton over continental shelf. The results indicate the generally low chlorophyll-a (<0.1 mg·m-3) in the continental region of the western SCS east of Hainan province before the storm, and more than 30% increase of chlorophyll-a (>0.14 mg·m-3) after the storm. The prominent increase of chlorophyll-a may be associated with the tropical storm. Analyses of vertical CTD (conductivity-temperature-depth recorder) temperature profiles and ADCP (acoustic Doppler current profilers) current profiles imply that the storm can induce strong inertial oscillation and precipitation as well as mixing/entrainment, together with tide influences, trigger uptake of nutrients and support increase of chlorophyll-a. In addition, comparing with deep seas, the relative shallow nitracline in continental shelf regions is also favorable to upwelling of nutrients.

参考文献

[1]Lin I I, Liu W T, Wu C C, et al. New evidence for enhanced ocean primary production triggered by tropical cyclone[J]. Geophysical Research Letters, 2003, 30: 1718- 1722.
[2]Zheng G m, Tang D l. Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff [J]. Mar Ecol Prog Ser, 2007, 333: 61-74.
[3]Zhao H, Tang, D l, Wang Y q. Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea[J]. Mar Ecol Prog Ser, 2008, 365: 57-65.
[4]刘增宏, 许建平, 朱伯康, 等. 利用Argo资料研究2001—2004年期间西北太平洋海洋上层对热带气旋的响应[J]. 热带海洋学报, 2006, 25(1):1-8.
[5]Chang Y, Liao H T, Lee M A, et al. Multisatellite observation on upwelling after the passage of Typhoon Hai-Tang in the southern East China Sea[J]. Geophys Res Lett, 2008, 35: L03612. doi:10.1029/2007GL032858.
[6]Lin I I, Wu C C, Pun I F, et al. Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part I: ocean features and category-5 typhoon’s intensification[J]. Mon Weather Rev, 2008, 136:3288-3306.
[7]Shang S l, Li L, Sun F q, et al. Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001[J]. Geophys Res Lett, 2008, 35: L10602. doi: 10.1029/ 2008GL033502.
[8]MCKINNON A D, MEEKAN M G, CARLETON J H, et al. Rapid changes in shelf waters and pelagic communities on the southern Northwest Shelf, Australia, following a tropical cyclone[J]. Cont Shelf Res, 2003, 23(1): 93-111.
[9]Shiah F K, Chung S W, Kao S J, et al. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait[J]. Cont Shelf Res, 2000, 20: 2029-2044.
[10]Zhao H, Tang D l, Wang D x. Phytoplankton blooms near the Pearl River Estuary induced by Typhoon Nuri[J]. J Geophys Res, 2009, 114, C12027. doi: 10.1029/ 2009JC005384.
[11]付东洋, 潘德炉, 丁又专, 等. 台风对海洋叶绿素a 浓度影响的定量遥感初探[J]. 海洋学报, 2009, 31(3): 46-56.
[12]付东洋, 丁又专, 刘大召, 等. 台风对中国东南海域叶绿素a 浓度影响的遥感研究[J]. 广东海洋大学学报, 2008, 28(4): 73-76.
[13]Chang J, Chung C C, Gong G C. Influences of cyclones on chlorophyll-a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem[J]. Mar Ecol Prog Ser, 1996, 140: 199-205.
[14]Liu K K, Chao S Y, Shaw P T, et al. Monsoon-forced chlorophyll distribution and primary production in the South China Sea[J]. Deep Sea Res Part Ⅰ, 2002, 49: 1387-1412.
[15]Chen C t, Liu C T, Chuang W S, et al. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea[J]. J Mar Syst, 2003, 42: 65-79.
[16]Tang D l, Kawamura H, Doan-Nhu H, et al. Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam[J]. J Geophys Res, 2004, 109. doi: 10.1029/2003JC002045.
[17]Tang D l, Kawamura H, Van D, et al. Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea[J]. Mar Ecol Prog Ser, 2004, 268: 31-41.
[18]Bender M, Ginis I, Kurihara Y. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model[J]. J Geophys Res, 1993, 98(D12): 23245-23263.
[19]Emanuel K. Thermodynamic control of hurricane intensity[J]. Nature, 1999, 401: 665-669.
[20]Zheng Z w, Ho C r, Kuo N j. The importance of preexisting oceanic conditions to upper ocean response induced by Super Typhoon Hai-Tang[J]. Geophys Res Lett, 2008, 35: L20603. doi: 10.1029/2008GL035524.
[21]Sun L, Yang Y j, Xian T, et al. Strong enhancement of chlorophyll-a concentration by a weak typhoon[J]. Mar Ecol Prog Ser, 2010, 404: 39-50. doi: 10.3354/meps08477.
[22]Wentz F J, Gentemann C, Smith D, et al. Satellite measurements of sea surface temperature through clouds[J]. Science, 2000, 288: 847-850.
[23]赵辉, 唐丹玲, 王素芬. 南海西北部夏季叶绿素浓度的分布特征及其对海洋环境的响应[J]. 热带海洋学报, 2005, 24(6): 31-37.
[24]唐世林, 陈楚群, 詹海刚, 等. 南海真光层厚度的遥感反演[J]. 热带海洋学报, 2007, 26(1): 9-15.
[25]Babin S M, Carton J A, Dickey T D, et al. Satellite evidence of hurricane-induced hytoplankton blooms in an oceanic desert[J]. J Geophys Res, 2004, 109: C03043. doi: 10.1029/2003JC001938.
[26]Boyer T P, Antonov J I, Garcia H E, et al. World Ocean Database 2005[G]//LEVITUS S. NOAA Atlas NESDIS 60. Washington D C: U S Government Printing Office, 2006: 190.
[27]张钒, 阮五崎, 黄邦钦. 台湾海峡南部叶绿素浓度a最大值的研究[J]. 厦门大学学报, 2000, 39(5): 664-668.
[28]朱大勇, 李立.台风Wayne过后南海北部陆架海域的近惯性振荡[J]. 热带海洋学报, 2007, 26(4): 1-7.
[29]Xu Z h, Yin B S, Hou Y j. Response of internal solitary waves to tropical storm Washi in the northwestern South China Sea[J]. Ann Geophys, 2011, 29: 2181-2187.
文章导航

/