海洋水文学

利用温度剖面资料结合海面高度估算全球海洋上层热含量异常

  • 刘增宏 ,
  • 许建平 ,
  • 孙朝辉
展开
  • 1. 卫星海洋环境动力学国家重点实验室, 浙江 杭州 310012; 
    2. 国家海洋局第二海洋研究所, 浙江 杭州 310012
刘增宏(1977—), 男, 江苏省无锡市人, 副研究员, 物理海洋调查与分析。E-mail: davids_liu@263.net

收稿日期: 2012-09-21

  修回日期: 2013-01-08

  网络出版日期: 2014-01-21

基金资助

国家海洋公益性行业科研专项经费项目(201005033); 科技部科技基础性工作专项(2012FY112300); 国家自然科学基金(41206022); 国家海洋局第二海洋研究所基本科研业务费专项资金项目(JT0804)

Combining sea surface height data with temperature profile data to estimate global upper ocean heat content anomaly

  • LIU Zeng-hong ,
  • XU Jian-ping ,
  • SUN Chao-hui
Expand
  • 1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China; 2. The Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China

Received date: 2012-09-21

  Revised date: 2013-01-08

  Online published: 2014-01-21

摘要

利用全球海洋约200万条温度剖面结合海面高度资料, 估算了1993—2009年全球海洋0—750m层的热含量异常。分析表明, 仅使用剖面温度资料估算的全球海洋上层热含量可以反映出大部分海区热含量的十年变化信号, 除了资料稀疏的海区(如南大洋)。全球0—750m海洋上层在1993—2009年的平均增暖速率约1.17W·m-2, 增暖最显著的海区出现在40ºS附近。全球海洋热储年际变化中大的信号基本上与厄尔尼诺南方涛动(ENSO)相关。热带海洋的热含量变化相对比较稳定。中、高纬海区, 特别是南大洋中、高纬海区的热含量增加速度在2001年后超过了热带海区。随着全球Argo实时海洋观测网的建成, 其资料量将大大超过过去几十年的总量, 结合Jason/TOPEX卫星高度计资料数据, 可以用来精确估算全球海洋上层热含量的变化, 为全球气候变化系统研究提供重要科学依据。

本文引用格式

刘增宏 , 许建平 , 孙朝辉 . 利用温度剖面资料结合海面高度估算全球海洋上层热含量异常[J]. 热带海洋学报, 2013 , 32(6) : 9 -15 . DOI: 10.11978/j.issn.1009-5470.2013.06.002

Abstract

Altimetric sea surface height data was combined with ~2000000 temperature profiles to estimate global upper 750m ocean heat content anomaly. The results showed that most of the 10-year variation signals could be resolved by in-situ temperature profiles alone, but in the regions where in-situ data were sparse (e.g., the Southern Ocean), the temperature data were not enough to resolve the changing signals. The global upper ocean had a warming rate of about 1.17 W/m2 from 1993 to 2009, and the most significant oceanic warming occurred near 40ºS. Most of the interannual variability in the global ocean heat storage was related to the El Niño and Southern Oscillation (ENSO). The variability of heat content in the tropical oceans was relatively steady, but that in the mid and high latitudes, especially in the Southern Ocean, exceeded that of the tropical oceans after 2001. As the Argo global ocean real-time observing array is fully complete, the amount of in-situ data at any moment will dramatically exceed the total amount of the data in the past decades. Combining with Jason and TOPEX/Poseidon altimeter data, the Argo data is able to estimate the variability of the global upper ocean heat content, thus providing important scientific evidence for global climate change.

参考文献

LEVITUS S, ANTONOV J I, WANG J, et al. Anthropogenic warming of Earth’s climate system[J]. Science, 2001, 292: 267-270.
HANSEN J, NAZARENKO L, RUEDY R, et al. Earth’s energy imbalance: confirmation and implications[J]. Science, 2005, 308: 1431-1435.
LEVITUS S J, ANTONOV I, BOYER T P. Warming of the world ocean, 1955-2003[J]. Geophys Res Lett, 2005, 32: L02604.
WILLIS J K, ROEMMICH D, CORNUELLE B. Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales[J]. J Geophys Res, 2004, 109: C12036.
LYMAN J M, SIMON A G, VIKTOR V G, et al. Robust warming of the global upper ocean[J]. Nature, 2010, 465: 334-337.
LEVITUS S, ANTONOV J I, BOYER T P, et al. Warming of the world ocean[J]. Science, 2000, 287: 2225-2229.
WHITE W, TAI C K. Inferring interannual changes in global upper ocean heat storage from TOPEX altimetry[J]. J Geophys Res, 1995, 100 (C12): 24943-24954.
LYMAN J M, JOHNSON G C. Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling[J]. J Climate, 2008, 21: 5629-5641.
WUNSCH C, PONTE R M, HEIMBACH P. Decadal trends in sea level patterns: 1993-2004[J]. J Climate, 2007, 20: 5889-5911.
GILSON J, ROEMMICH D, CORNUELLE B, et al. Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific[J]. J Geophys Res, 1998, 103: 27947-27965.
CARTON J A, GIESE B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Mon Weather Rev, 2008, 136: 2999-3017.
DAVEY M. Enhanced ocean data assimilation and climate prediction[R]. UK: Met Office, 2005: 1-79.
GREGORY J M, BANKS H T, STOTT P A, et al. Simulated and observed decadal variability in ocean heat content[J]. Geophy Res Lett, 2004, 31: L14614.
ACHUTAR K, ISHII M, SANTER B D, et al. Simulated and observed variability in ocean temperature and heat content[J]. Proc Na Acad Sci, 2007, 104: 10768-10773.
BOYER T P, ANTONOV J I, GARCIA H, et al. World ocean database 2005, Chapter 1: Introduction[R]//LEVITUS S. NOAA Atlas NESDIS 60[R]. Washington D C: Government printing office, 2006: 1-182.
SMEED D A, ALDERSON S G. Inference of deep ocean structure from upper ocean measurements[J]. J Atmos Oceanic Technol, 1997, 14(3): 604-665.
STEPHENS C, ANTONOV J I, BOYER T P, et al. World ocean atlas 2001, Volume 1: Temperature[R]//LEVITUS S. NOAA Atlas NESDIS 49. Washington D C: Government Printing Office, 2002: 1-167.
DUCET N, LE TRAON P Y, REVERDIN G. Global high resolution mapping of ocean circulation from TOPEX/ Poseidon and ERS-1 and -2[J]. J Geophys Res, 2000, 105(C8): 19477-19498.
LYMAN J M, WILLIS J K, JOHNSON G C. Recent cooling of the upper ocean[J]. Geophys Res Lett, 2006, 33: L18604.
WILLIS J K, ROEMMICH D, CORNUELLE B. Combining altimetric height with broadscale profile data to estimate steric height, heat storage, subsurface temperature, and sea-surface temperature variability[J]. J Geophys Res, 2003, 108(C9): 3292.
TRENBERTH K E. The ocean is warming, isn’t it?[J]. Nature, 2010, 465: 304.
ROEMMICH D, GILSON J. The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Prog Oceanogr, 2009, 82: 81-100.
吴晓芬. 基于Argo资料的热带西太平洋上层海洋热含量研究[D]. 杭州: 国家海洋局第二海洋研究所, 2010: 1-91.

文章导航

/