海洋地貌学

南海珠江口外海底峡谷形成的控制因素及过程

  • 丁巍伟 ,
  • 李家彪 ,
  • 李军 ,
  • 韩喜彬
展开
  • 1. 国家海洋局海底科学重点实验室, 浙江 杭州 310012; 
    2. 国家海洋局第二海洋研究所, 浙江 杭州 310012; 
    3. 国家海洋局海洋发展战略研究所, 北京 100860
丁巍伟(1977—), 男, 研究员, 研究方向为海洋地质学。E-mail: wwding@sio.org.cn

收稿日期: 2012-03-29

  修回日期: 2012-07-05

  网络出版日期: 2014-01-21

基金资助

国家自然科学基金(41376066); 国家海洋局基本科研业务费专项资金项目(JT1202)

Formation process and controlling factors of the Pearl River Canyon in the South China Sea

  • DING Wei-wei ,
  • LI Jia-biao ,
  • LI Jun ,
  • HAN Xi-bin
Expand
  • 1. Key Laboratory of Submarine Geoscience of the State Oceanic Administration, Hangzhou 310012, China; 
    2. Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China; 
    3. China Institute for Marine Affairs, State Oceanic Administration, Beijing 100860, China

Received date: 2012-03-29

  Revised date: 2012-07-05

  Online published: 2014-01-21

摘要

珠江口外海底峡谷是南海北部陆坡海底峡谷群的典型代表。该海底峡谷始于南海北部陆架, 向下走向经历多次转折, 峡谷末端进入南海深海盆后, 发育为小型海底扇形体。该峡谷特征独特, 地貌多变, 不仅是陆架-陆坡-海盆物质交换的通道, 也是陆缘沉积物堆积的场所。利用在该区获得的多波束数据, 结合多道地震数据, 研究该海底峡谷的地貌和沉积充填特征, 分析珠江口外海底峡谷形成发育的主控因素和发育过程。研究发现, 珠江口外海底峡谷的形成受到新生代构造作用的控制。中新世以来, 白云凹陷开始发生强烈的沉降作用, 变为陆坡盆地, 研究区陆架-陆坡-深水盆地的沉积格局开始形成, 陆架坡折带北迁至白云凹陷北侧。21Ma以来海平面多次下降至陆架坡折带附近, 陆架出露, 古珠江可以直接穿越陆架到达坡折带, 并向下陆坡和深水盆地倾泻物质, 从而开始了珠江口外峡谷和冲沟群的发育。研究区发育的北北西—北西向(NNW—NW)断裂控制了部分水道的展布。北侧陆坡区大量发育的小型峡谷群是陆源物质向下陆坡和深水盆地输送的主要通道。海底峡谷中下段主要依托于白云凹陷古地形发育, 长期处于堆积状态, 接受了经由峡谷输送的绝大部分物质。

本文引用格式

丁巍伟 , 李家彪 , 李军 , 韩喜彬 . 南海珠江口外海底峡谷形成的控制因素及过程[J]. 热带海洋学报, 2013 , 32(6) : 63 -72 . DOI: 10.11978/j.issn.1009-5470.2013.06.010

Abstract

The Pearl River Canyon is a typical canyon system on the northern continental slope of the South China Sea. The canyon head lies in the continental shelf of the South China Sea, and the course changes its direction several times before finally entering the abyssal basin. Only a small sedimentary fan is developed in the canyon mouth. The Pearl River Canyon acts not only as the main conduit for transferring terrestrial sediments towards the deep sea but also as a trap for the along-shelf transport of sediments. Through swath bathymetry in the canyon area combined with different types of seismic data, we studied the morphotectonics and controlling factors by analyzing the morphology and sedimentary structure of the canyon, as well as the main features of the continental slope around the canyon. Results show that the geomorphologic characteristics of the Pearl River Canyon are closely related to the Cenozoic structural and sedimentary processes and sea level change. Since the Miocene, the Baiyun Sag has undergone a rapid thermal subsidence and become a long-term negative landform. The shelf break belt has migrated northward, to north of the Baiyun Sag. At 21 Ma a major lowstand event occurred, in which sea level fell to the shelf break, exposing the continental shelf. The paleo-Pearl River reached the shelf break, which enhanced the sediment transport with frequent slides, slumps, and other sediment flows. This resulted in an incised slope with multiple canyons. The NW-trending faults probably pre-determined the position of the canyons and caused heavy downcutting erosion. Subsequent episodic sea level changes made vertically-stacked buried channels. The canyons on the northern slope of the Baiyun Sag are the main conduits for transporting terrigenous materials to the lower slope and abyssal basin. The middle and lower reaches of the Pearl River Canyon were developed upon the paleo-terrain of the Baiyun Sag, and have been a depositional environment for a long time, receiving most of the materials transported via the canyon/channel.

参考文献

HAGEN R A, BERERSEN D D, MOBERLY R, et al. Morphology of a large meandering submarine canyon system on the central Chile forearc[J]. Mar Geol, 1994, 129: 197-205.
KLAUS A, TAYLOR B. Submarine canyon development in the Izu-Bonin forearc: A SeaMARC Ⅱ and seismic survey of Aoga Shima Canyon[J]. Mar Geophys Res, 1991, 13: 131-152.
HAGEN R A, VERGARA H, NAAR D F. Morphology of San Antonio submarine canyon on the central Chile forearc[J]. Mar Geol, 1996, 129: 197-205.
KOTTKE B, SCHWENK T, BREITZKE M, et al. Acoustic facies and depositional processes in the upper submarine canyon Swatch of No Ground (Bay of Bengal)[J]. Deep Sea Rea Ⅱ, 2003, 50: 979-1001.
OLIVEIRA A, SANTOS A L, RODROGIUE A, et al. Sedimentary particle distribution and dynamics on the Nazare canyon system and adjacent shelf (Portugal)[J]. Mar Geol, 2007, 246(2-4): 105-122.
DURRIEU D E, MADRON X. Hydrography and nepheloid structures in the Grand-Rhone canyon[J]. Continental Shelf Res, 1994, 14: 457-477.
MCHUGH C M G, DAMUTH J E, MOUNTAIN G S. Cenozoic masstransport facies and their correlation with relative sea-level change, New Jersey continental margin[J]. Mar Geol, 2002, 184: 295-334.
李巍然, 杨作升, 王琦, 等. 冲绳海槽陆缘碎屑峡谷通道搬运与海底扇沉积[J]. 海洋与湖沼, 2001, 32(4): 371-380.
刘保华, 李西双, 赵月霞, 等. 冲绳海槽西部陆坡碎屑沉积物的搬运方式: 滑塌和重力流[J]. 海洋与湖沼, 2005, 36(1): 1-9.
GAY A, LOPEZ M, BERDNT C, et al. Geological controls on focused fluid flow associated with seafloor seeps in the lower Congo Basin[J]. Mar Geol, 244(1-4): 68-92.
GRANATA T C, VIDONDO B, DUARTE C M, et al. Hydrodynamics and particles transport associated with a submarine canyon of Blanes (Spain), NW Mediterranean Sea[J]. Continental Shelf Res, 1999, 19: 1249-1263.
彭大钧, 陈长民, 庞雄, 等. 南海珠江口盆地深水扇系统的发现[J]. 石油学报, 2004, 25(5): 17-23.
许东禹. 中国近海地质[M]. 北京: 地质出版社, 1997: 77.
金庆焕. 南海地质与油气资源[M]. 北京: 地质出版社, 1989: 84-111.
柳保军, 袁立忠, 申俊, 等.南海北部陆坡古地貌特征与13.8Ma以来珠江深水扇[J]. 沉积学报, 2006, 24(4): 476-482.
郑晓东, 朱明, 何敏, 等. 珠江口盆地白云凹陷荔湾深水扇砂体分布预测[J]. 石油勘探与开发, 2007, 34(5): 529-533.
ZHU M Z, GRAHAM S, PANG X, et al. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic[J]. Mar Petrol Geol, 2010, 27(1): 307-319.
丁巍伟, 李家彪, 李军. 南海北部陆坡海底峡谷形成机制探讨[J]. 海洋学研究, 2010, 28(1): 26-31.
ZHOU DI, SUN ZHEN, LIAO JIE, et al. Filling history and post-breakup acceleration of sedimentation in Baiyun Sag, deepwater northern South China Sea[J]. J Earth Sci, 2009, 20(1): 160-171.
SUN ZHEN, ZHONG ZHIHONG, KEEP M, et al. 3D analogue modeling of the South China Sea: A discussion on breakup pattern[J]. J Asian Earth Sci, 2009, 34: 544-556.
BRIAIS A, PATRIAT P, TAPPONNIER P. Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea: Implications for the tertiary tectonics of Southeast Asia[J]. J Geophysl Res, 1993, 98(B4): 6299-6328.
陈汉宗, 吴湘杰, 周蒂, 等. 珠江口盆地新生代主要断裂特征和动力背景分析[J]. 热带海洋学报, 2005, 24(2): 52-61.
孙龙涛, 周蒂, 陈长民, 等. 珠江口盆地白云凹陷断裂构造特征及其活动期次[J]. 热带海洋学报, 2008, 27(2): 25-31.
庞雄, 陈长民, 施和生, 等. 相对海平面变化与南海珠江深水扇系统的响应[J]. 地学前缘, 12(3): 167-177.
庞雄, 陈长民, 彭大钧, 等. 南海珠江深水扇系统及油气[M]. 北京: 科学出版社, 2007: 45-48.
彭大钧, 庞雄, 陈长民, 等. 南海深水扇系统的形成特征与控制因素[J]. 沉积学报, 2006, 24(1): 10-18.
王海荣, 王英民, 邱燕, 等. 南海北部陆坡的地貌形态及其控制因素[J]. 海洋学报, 2008, 30(2): 70-79.
孙珍, 庞雄, 钟志洪, 等. 珠江口盆地白云凹陷新生代构造演化动力学[J]. 地学前缘, 2005, 12(4): 489-498.
黄春菊, 周蒂, 陈长民, 等. 深反射地震剖面所揭示的白云凹陷的深部地壳结构[J]. 科学通报, 2005, 50(10): 1024-1031.
汪品先. 十五万年以来的南海[M]. 上海: 同济大学出版社, 1995: 12.
邵磊, 庞雄, 乔培军, 等. 珠江口盆地的沉积充填与珠江的形成演变[J]. 沉积学报, 2008, 26(2): 179-185.
邵磊, 李献华, 汪品先, 等. 南海渐新世以来构造演化的沉积记录——ODP1148站深海沉积物中的证据[J]. 地球科学进展, 2004, 19(4): 539-544.
PRATSON L F, RYAN W B F, MOUNTAIN G S, et al., Submarine canyon initiation by downslope-eroding sediment flows: evidence in late Cenozoic strata on the New Jersey continental slope[J]. GSA Bull, 1994, 106(3): 395-412.
PUIG P, PALANQUES S. Temporal variability and composition of settling particle fluxes on the Barcelona continental margin (Northwestern Mediterranean)[J]. J Mar Res, 1998, 56: 639-645.
SIBUET J C, HSU S K. How was Taiwan created[J]. Tectonophysics, 2004, 379(1-4): 159-181.

文章导航

/