收稿日期: 2012-04-05
修回日期: 2012-05-10
网络出版日期: 2014-01-21
基金资助
中国科学院战略性先导科技专项(XDA10020200、XDA05030403); 科技部科技基础性工作专项(2012FY112400、2013FY111200); 国家自然科学基金资助项目(41276161、41130855、41276162); 广东省科技计划项目(2005A30501001、2009B030600004)
Preliminary study on marine bacterial growth efficiency in the northern South China Sea in summer
Received date: 2012-04-05
Revised date: 2012-05-10
Online published: 2014-01-21
2010年9月对南海北部海域细菌生长效率、细菌呼吸率、细菌生产力及相关生态、环境因子进行了调查研究。结果表明, 细菌生产力(C)和细菌呼吸率(C)表层平均值分别为0.08±0.02mg·m-3·h-1和0.92±0.18mg·m-3·h-1, 细菌生长效率在6.20%—9.84%范围波动。细菌生产力、细菌生长效率的空间分布呈现由近岸向外海逐渐递减趋势, 而细菌呼吸率的分布特征相对不显著。细菌呼吸率和细菌需碳量明显高于初级生产力, 表明南海北部海域整体呈异养性特征, 初级生产过程不足以满足细菌生长代谢对碳的需求。尽管细菌生产力与细菌呼吸率相关性显著, 但与两者相关的环境因子不完全一致, 说明它们可能存在不同的调控机制。综合分析细菌生产力、细菌呼吸率和相关生态环境因子, 结果表明, 南海北部异养细菌二次生产和呼吸代谢2种不同的生态功能在微食物环以及整个生态系统的物质循环和能量流动中均发挥重要作用。
王生福 , 宋星宇 , 黄良民 , 谭烨辉 , 柯志新 . 南海北部夏季浮游细菌生长效率初步研究*[J]. 热带海洋学报, 2013 , 32(6) : 73 -79 . DOI: 10.11978/j.issn.1009-5470.2013.06.011
An in situ study on bacterial growth efficiency, bacterial respiration, bacterial production, and related ecological and environmental factors were carried out in the northern South China Sea in September 2010. The average values of bacterial production (C) and bacterial respiration (C) were 0.08±0.02 mg·m-3·h-1and 0.92±0.18 mg·m-3·h-1, respectively, while the bacterial growth efficiency varied between 6.20% and 9.84%. Both bacterial respiration and bacterial carbon demand were obviously higher than the primary production, indicating that the surface waters of the northern South China Sea were characterized as a heterotrophic system, and the carbon produced by primary productivity could not meet the demand of bacterial metabolism. Although the bacterial production was significantly correlated with the bacterial respiration in the northern South China Sea, the notable correlated environmental factors of these two parameters did not match, which suggests that these two ecological processes may have different regulation mechanisms in the study area. The integrated analysis on bacterial metabolism and related ecological and environmental factors indicated that both bacterial respiration and bacterial production played important roles in the circulation of materials and energy flux in microbial loop and the whole ecosystem of the northern South China Sea.
WILLIAMS P J. The balance of plankton respiration and photosynthesis in the open oceans[J]. Nature, 1998, 394: 55-57.
COTNER J, BIDDANDA B. Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems[J]. Ecosystems, 2002, 5: 105-121.
ROBINSON C, WILLIAMS P. Plankton net community production and dark respiration in the Arabian Sea during September 1994[J]. Deep Sea Res Pt Ⅱ, 1999, 46: 745-765.
AZAM F, FENCHE T, FIELD J G, et al. The ecological role of water-column microbes in the sea[J]. Mar Ecol Prog Ser, 1983, 10: 257-263.
AZAM F, MALFATTI F. Microbial structuring of marine ecosystems[J]. Nat Rev Microbiol, 2007, 5: 782-791.
GASOL J M, PINHASSI J, ALONSO-SAEZ L, et al. Towards a better understanding of microbial carbon flux in the sea[J]. Aquat Microb Ecol, 2008, 53: 21-38.
DEL GIORGIO P A, COLE J J. Bacterial growth efficiency in natural aquatic systems[J]. Annu Rev Ecol Syst, 1998, 29: 503-541.
DEL GIORGIO P A, COLE J J, CIMBLERIS A. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems[J]. Nature, 1997, 385: 148-151.
郝锵, 宁修仁, 刘诚刚, 等. 南海北部初级生产力遥感反演及其环境调控机制[J]. 海洋学报, 2007, 29(3): 58-68.
刘诚刚, 宁修仁, 蔡昱明, 等. 南海北部及珠江口细菌生产力研究[J]. 海洋学报, 2007, 29(2): 112-122.
宋星宇, 刘华雪, 黄良民, 等. 南海北部夏季基础生物生产力分布特征及影响因素[J]. 生态学报, 2010, 30(23): 6409-6417.
NING XIUREN, LI W K W, CAI YUMING, et al. Comparative analysis of bacterioplankton and phytoplankton in three ecological provinces of the northern South China Sea[J]. Mar Ecol Prog Ser, 2005, 293: 17-28.
国家技术监督局. GB12763.6-2007 海洋调查规范——海洋生物调查[S]. 北京: 中国标准出版社, 2007: 6-30.
PARSONS T R, MAITA Y, LALLI C M. A manual of chemical and biological methods for seawater analysis[M]. Oxford: Pergamon Press, 1984: 101-104.
KNAP A, MICHAELS A, CLOSE A, et al. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements [M]. Bergen: International Ocean Commission, 1996: 155-162.
KIRCHMAN D. Leucine incorporation as a measure of biomass production by heterotrophic bacteria[M]//KEMP P F, SHERR B, SHERR E, et al. Handbook of methods in aquatic microbial ecology. Boca Raton: Lewis Pub, 1993: 509-512.
PRADEEP RAM A S, NAIR S, CHANDRAMOHAN D. Bacterial growth efficiency in the tropical estuarine and coastal waters of Goa, southwest coast of India[J]. Microb Ecol, 2003, 45: 88-96.
KIRCHMAN D L, HILL V, COTTRELL M T, et al. Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean[J]. Deep Sea Res Pt Ⅱ, 2009, 56: 1237-1248.
SHERR B F, SHERR E B. Community respiration/ production and bacterial activity in the upper water column of the central Arctic Ocean[J]. Deep Sea Res Pt Ⅰ, 2003, 50: 529-542.
PRADEEP RAM A S, NAIR S, CHANDRAMOHAN D. Bacterial growth efficiency in a tropical estuary: Seasonal variability subsidized by allochthonous carbon[J]. Microb Ecol, 2007, 53: 591-599.
李洪波, 肖天, 赵三军,等. 海洋异养浮游细菌参数的测定和估算[J]. 海洋科学, 2005, 29(2): 58-63.
TANAKA T, RASSOULZADEGAN F. Vertical and seasonal variations of bacterial abundance and production in the mesopelagic layer of the NW Mediterranean Sea: Bottom-up and top-down controls[J]. Deep Sea Res Pt Ⅰ, 2004, 51: 531-544.
FOGG G. The ecological significance of extracellular products of phytoplankton photosynthesis[J]. Bot Mar, 1983, 26: 3-14.
DEL GIORGIO P A, COLE J J. Bacterial energetics and growth efficiency[M]//KIRCHMAN D L. Microbial Ecology of the Oceans: 2nd ed. New York: Wiley-Liss, 2008: 289-325.
DEL GIORGIO P A, WILLIAMS P J L. Respiration in aquatic ecosystems[M]. Oxford: Oxford University Press, 2005: 19-35.
RIVKIN R, LEGENDRE L. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration[J]. Science, 2001, 291: 2398.
GONZALEZ N, ANADON R, VIESCA L. Carbon flux through the microbial community in a temperate sea during summer: Role of bacterial metabolism[J]. Aquat Microb Ecol, 2003, 33: 117-126.
MARRA J, BARBER R T. Primary productivity in the Arabian Sea: A synthesis of JGOFS data[J]. Prog Oceanogr, 2005, 65: 159-175.
LEMEE R, ROCHELLE-NEWALL E, WAMBEKE F V, et al. Seasonal variation of bacterial production, respiration and growth efficiency in the open NW Mediterranean Sea[J]. Aquat Microb Ecol, 2002, 29: 227-237.
YUAN XIANGCHENG, YIN KEDONG, HARRISON P J, et al. Variations in apparent oxygen utilization and effects of P addition on bacterial respiration in subtropical Hong Kong waters[J]. Estuar Coast, 2011, 34: 536-543.
APPLE J, DEL GIORGIO P A, MICHAEL KEMP W. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary[J]. Aquat Microb Ecol, 2006, 43: 243-254.
LEE C W, BONG C W. Bacterial respiration, growth efficiency and protist grazing rates in mangrove waters in Cape Rachado, Malaysia[J]. Asian J Water Environ Pollut, 2007, 4(1): 11-16.
MOTEGI C, NAGATA T, MIKI T, et al. Viral control of bacterial growth efficiency in marine pelagic environments [J]. Limnol Oceanogr, 2009, 54(6): 1901-1910.
INGRAHAM J L, MARR A G. Effect of temperature, pressure, pH, and osmotic stress on growth[M]//ORTH J D, FLEMING R M, PALSSON B O. Escherichia coli and Salmonella: Cellular and molecular biology: 2nd ed. Washington: ASM Press, 1996: 1570-1578.
YIN KEDONG, QIAN PEIYUAN, WU W C S, et al. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer[J]. Mar Ecol Prog Ser, 2001, 221: 17-28.
/
〈 | 〉 |