海洋水文学

卫星遥感南海海表面日增温的时空变化特征*

  • 林锐 ,
  • 张彩云 ,
  • 李炎
展开
  • 1. 福建省海陆界面生态重点实验室(厦门大学), 福建 厦门 361005; 2. 厦门大学环境与生态学院, 福建 厦门 361005;
林锐(1988~), 女, 福建省龙岩市, 硕士研究生, 主要从事海洋遥感应用研究。E-mail: sannoy@126.com

收稿日期: 2012-10-24

  修回日期: 2013-07-11

  网络出版日期: 2014-04-02

Satellite observation of the temporal and spatial variation of sea surface diurnal warming in the South China Sea

  • LIN Rui ,
  • ZHANG Cai-yun ,
  • LI Yan
Expand
  • 1. Fujian Provincial Joint Key Laboratory for Coastal Ecology and Environmental Studies (Xiamen University), Xiamen 361005, China; 2. College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;

Received date: 2012-10-24

  Revised date: 2013-07-11

  Online published: 2014-04-02

摘要

利用搭载在Aqua和Terra卫星上的MODIS(moderate resolution imaging spectroradiometer)、AMSR-E(advanced microwave scanning radiometer for the earth observing system)传感器测量反演的昼夜海表温度(SST), 计算海表面日增温(sea surface diurnal warming), 分析南海海表面日增温的短期和年变动特征。受观测平台过境时间、传感器测量SST方式、反演算法等影响, MODIS/Aqua计算的日增温幅度略大于AMSR-E/Aqua和MODIS/Terra, 但在表征南海海表面日增温的时空分布特征以及变化趋势上三者并未见显著性差异。南海海表面日增温在时间分布上以冬季为最小, 春季为最大; 在空间分布上则是南部海域大于中部和北部海域, 东部海域大于西部海域。春夏之交的吕宋海峡西北部尤其容易发生日增温事件。海表面日增温与太阳辐射、风速、云量等影响有关, 其中风速与海表面日增温显著负相关。

本文引用格式

林锐 , 张彩云 , 李炎 . 卫星遥感南海海表面日增温的时空变化特征*[J]. 热带海洋学报, 2014 , 33(2) : 17 -27 . DOI: 10.11978/j.issn.1009-5470.2014.02.003

Abstract

Satellite-derived sea surface temperature (SST) data from the MODIS (moderate resolution imaging spectroradiometer)/ Aqua, AMSR-E (advanced microwave scanning radiometer for the earth observing system)/Aqua and MODIS/Terra over the past ~10 years are analyzed to investigate the sea surface diurnal warming in the South China Sea (SCS). The results reveal that sea surface diurnal warming derived by MODIS/Aqua is slightly higher than that by AMSR-E/Aqua and MODIS/Terra, due to the differences in satellite transit time, sampling manner and retrieval algorithm, among others. However, there are no significant biases in terms of spatial and temporal distributions, and of the variation of sea surface diurnal warming over the SCS. The magnitude of sea surface diurnal warming in the SCS is the weakest during winter, and the strongest during spring. The magnitude is generally larger in the southern regions than in the central and northern regions, and is larger in the eastern regions than in the western regions. Northwest of the Luzon Strait, the sea surface diurnal warming tends to appear easily from late spring to early summer. It is suggested that the seasonal variation of sea surface diurnal warming in the SCS be affected by solar radiation, wind speed and cloud amount; among them, the wind speed is the most important factor with a significant negative correlation with the diurnal warming.

参考文献

[1].王桂华, 苏纪兰, 齐义泉. 2005. 南海中尺度涡研究进展[J]. 地球科学进展, 20: 882-886.
[2].肖晖, 蔡淑惠. 1988. 台湾海峡西部海域温, 盐度分布特征[J]. 台湾海峡, 7: 227-234.
[3].臧楠. 2005. 南海 SST 日变化特征及夏季风爆发对 SST日变化的影响[D]. 青岛: 中国海洋大学: 1-65
[4].张学斌, 胡建宇. 2000. 台湾浅滩南部边缘海域1997年8月温盐度的多周日变化[J]. 台湾海峡, 19: 89-94.
[5].DONLON C, MINNETT P, GENTEMANN C, et al. 2002. Toward improved validation of satellite sea surface skin temperature measurements for climate research[J]. Journal of Climate, 15(4): 353-369.
[6].FLAMENT P, FIRING J, SAWYER M, et al. 1994. Amplitude and horizontal structure of a large diurnal sea surface warming event during the Coastal Ocean Dynamics Experiment[J]. Journal of Physical Oceanography, 24: 124-139.
[7].GENTEMANN C L, DONLON C J, STUART-MENTETH A, et al. 2003. Diurnal signals in satellite sea surface temperature measurements[J]. Geophysical Research Letters, 30(3): 1140.
[8].GENTEMANN C L, MINNETT P J. 2008. Radiometric measurements of ocean surface thermal variability[J]. Journal of Geophysical Research, 113: C08017.
[9].HOSODA K, KAWAMURA H, LAN K W, et al. 2012. Temporal scale of sea surface temperature fronts revealed by microwave observations[J]. Geoscience and Remote Sensing Letters, 9(1): 3-7.
[10].KAWAI Y, WADA A. 2007. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review[J]. Journal of oceanography, 63: 721-744.
[11].LI W B, LUO C, WANG D X, et al. 2010. Diurnal variations of precipitation over the South China Sea[J]. Meteorology and Atmospheric Physics, 109(1-2): 33-46.
[12].MERCHANT C, FILIPIAK M, LE BORGNE P, et al. 2008. Diurnal warm-layer events in the western Mediterranean and European shelf seas[J]. Geophysical Research Letters, 35: L04601.
[13].PRICE J, WELLER R, PINKEL R. 1986. Diurnal cycling: Observations and models of the upper-ocean response to diurnal heating, cooling, and wind mixing[J]. Journal of Geophysical Research, 91(C7): 8411-8427.
[14].QIU C H, WANG D X, KAWAMURA H, et al. 2009. Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea[J]. Continental Shelf Research, 29(20): 2358-2366.
[15].QU T D, DU Y, GAN J P, et al. 2007. Mean seasonal cycle of isothermal depth in the South China Sea[J]. Journal of Geophysical Research, 112(C2): C02020.
[16].SAKAIDA F, KAWAMURA H, TAKAHASHI S, et al. 2009. Research and development of the New Generation Sea Surface Temperature for Open Ocean(NGSST-O)product and its demonstration operation[J]. Journal of Oceanography, 65: 859-870.
[17].STRAMMA L, CORNILLON P, WELLER R A, et al. 1986. Large diurnal sea surface temperature variability: Satellite and in situ measurements[J]. Journal of Physical Oceanography, 16: 827-837.
[18].STUART-MENTETH A C, ROBINSON I S, CHALLENOR P G. 2003. A global study of diurnal warming using satellite- derived sea surface temperature[J]. Journal of Geophysical Research: Oceans (1978-2012), 108(C5): 3155.
[19].SUN L, ZHENG Q A, WANG D X, et al. 2011. A case study of near-inertial oscillation in the South China Sea using mooring observations and satellite altimeter data[J]. Journal of Oceanography, 67(6): 677-687.
[20].SUN L, ZHENG Q A, TANG T Y, et al. 2012. Upper ocean near-inertial response to 1998 Typhoon Faith in the South China Sea[J]. Acta Oceanologica Sinica, 31(2): 25-32.
[21].TANAHASHI S, KAWAMURA H, TAKAHASHI T, et al. 2003. Diurnal variations of sea surface temperature over the wide-ranging ocean using VISSR on board GMS[J]. Journal of Geophysical Research, 108(C7): 3216.
[22].WALTON C, PICHEL W, SAPPER J, et al. 1998. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites[J]. Journal of Geophysical Research, 103(C12): 27999-28012.
[23].WANG D X, DU Y, SHI P. 2001a. Evidence for thermocline ventilation in the South China Sea in winter[J]. Chinese Science Bulletin, 46(9): 774-778.
[24].WANG D X, LIU Y, QI Y Q, et al. 2001b. Seasonal variability of thermal fronts in the northern South China Sea from satellite data[J]. Geophysical Research Letters, 28(20): 3963-3966.
[25].WANG D X, LIU Q Y, XIE Q, et al. 2013. Progress of regional oceanography study associated with western boundary current in the South China Sea[J]. Chinese Science Bulletin, 58(11): 1205-1215.
[26].WENTZ F, MEISSNER T. 2000. AMSR Ocean Algorithm, Version 2[M]. Santa Rosa: Remote Sensing Systems: 1-66.
[27].YAO J L, BELKIN I, CHEN J, et al. 2012. Thermal fronts of the southern South China Sea from satellite and in situ data[J]. International Journal of Remote Sensing, 33(23): 7458-7468.
[28].YOKOYAMA R, TANBA S, SOUMA T. 1995. Sea surface effects on the sea surface temperature estimation by remote sensing[J]. International Journal of Remote Sensing, 16(2): 227-238.
[29].ZENG L L, DU Y, XIE S P, et al. 2009a. Barrier layer in the South China Sea during summer 2000[J]. Dynamics of Atmospheres and Oceans, 47(1): 38-54.
[30].ZENG L L, SHI P, LIU W T, et al. 2009b. Evaluation of a satellite-derived latent heat flux product in the South China Sea: A comparison with moored buoy data and various products[J]. Atmospheric Research, 94(1): 91-105.
[31].ZENG L L, WANG D X. 2009c. Intraseasonal variability of latent-heat flux in the South China Sea[J]. Theoretical and Applied Climatology, 97(1-2): 53-64.
[32].ZHUANG W, WANG D X, HU J Y, et al. 2006. Response of the cold water mass in the western South China Sea[J]. Acta Oceanologica Sinica, 25(4): 1-13.
[33].
文章导航

/