2010年9月在南海北部5个深海站位和1个浅海站位进行了小型底栖动物和环境因子采样, 对小型底栖动物的丰度和生物量进行了定量研究。本次调查中, 共鉴定出10个小型底栖动物类群, 分别是线虫、桡足类、多毛类、介形类、甲壳类幼体、异足类、寡毛类、涡虫、无板类和等足类。从丰度来看, 线虫是绝对的优势类群, 占总丰度百分比为94.72%; 桡足类次之, 占2.70%; 多毛类再次, 占1.62%; 其他类群之和仅占0.96%。从生物量来看, 线虫的生物量最大, 占总生物量的53.83%; 其次是多毛类, 占32.17%; 居生物量第三位的是桡足类, 占7.14%; 其他类群之和占6.85%。小型底栖动物的丰度和干重生物量分别为566.12±635.61个·(10cm2)-1和398.43±431.98µg·?10cm 2? -1? 线虫的丰度和干重生物量分别为536.21±593.48个· (10cm 2? -1和214.48±237.39µg·?10cm 2? -1。研究站位线虫、桡足类、多毛类和小型底栖动物丰度, 小型底栖动物生物量与环境因子的相关分析表明, 影响线虫丰度、小型底栖动物丰度、小型底栖生物生物量的主要环境因子包括底层水pH值、沉积物粉砂黏土含量和有机质含量。单因素方差分析(One-way ANVOA)结果表明, 线虫丰度、桡足类丰度、小型底栖动物丰度和生物量在不同站位均有显著差异。与渤海、北黄海、南黄海、长江口、芽庄湾(越南)、大亚湾、北部湾、南海近海等海域相比, 本研究海域的小型底栖动物丰度和生物量偏低。
Meiofauna and environmental variables were sampled and analyzed at five deep-sea stations and one shallow-sea station in the northern South China Sea in September 2010. A total of 10 taxa of meiofauna were identified, including Nematoda, Copepoda, Polychaeta, Ostracoda, nauplii, Tanaidacea, Oligochaeta, Turbellaria, Aplacophora, and Isopoda. Nematoda was the most dominant group, accounting for 94.72% of the total meiofauna abundance, followed by Copepoda (2.70%), Polychaeta (1.62%) and other taxa that only account for 0.96%. In terms of biomass, Nematoda accounts for 53.83%, followed by Polychaeta (32.17%), Copepoda (7.14%) and other taxa that account for 6.85%. The average abundance and dry biomass of meiofauna were 566.12±635.61 ind·(10cm2)-1 and 398.43±431.98 µg·(10cm2)-1, respectively. Those of Nematoda were 536.21±593.48 ind·(10cm2)-1 and 214.48±237.39 µg·(10cm2)-1, respectively. Results of correlation analysis between abundance of nematode, copepod, polychaete, total meiofauna, biomass of total meiofauna and environmental factors showed that the main factors controlling nematode abundance, meiofaunal abundance and biomass were bottom-water pH, silt-clay percentage and sediment organic matter. Results of one-way analysis of variance (ANOVA) showed that there were significant differences for nematode abundance, copepod abundance, total meiofauna abundance, and biomass at different stations. Compared with the Bohai Sea, northern Yellow Sea, southern Yellow Sea, Yangtze River Estuary, Nha Trang Bay (Vietnam), Daya Bay, Beibu Gulf, and the coastal areas of South China Sea, the abundance and biomass of meiofauna in the present study were lower.
[1]蔡立哲. 2006. 海洋底栖生物生态学和生物多样性研究进展[J]. 厦门大学学报: 自然科学版, 45(2): 84-85.
[2]陈海燕, 周红, 慕芳红, 等. 2009. 北黄海小型底栖生物丰度和生物量时空分布特征[J]. 中国海洋大学学报: 自然科学版, 39(4): 657-663.
[3]杜永芬, 徐奎栋, 孟昭翠, 等. 2011. 南海小型底栖动物生态学的初步研究[J]. 海洋与湖沼, 41(2): 199-207.
[4]方少华, 吕小梅, 张跃平, 等. 2000. 台湾海峡小型底栖生物数量的量分布[J]. 海洋学报, 22(6): 136-140.
[5]李冠国, 范振刚. 2010. 海洋生态学[M]. 北京: 高等教育出版社: 17-19.
[6]刘晓收. 2005. 南黄海鳀鱼产卵场小型底栖动物生态学研究[D]. 青岛: 中国海洋大学: 49-50.
[7]慕芳红, 张志南, 郭玉清. 2001. 渤海小型底栖生物的丰度和生物量[J]. 青岛海洋大学学报: 自然科学版, 31(6): 897-905.
[8]唐玲, 张洪波, 李恒翔, 等. 2012. 大亚湾秋季小型底栖生物初步研究[J]. 热带海洋学报, 31(4): 104-111.
[9]王家栋, 类彦立, 徐奎栋, 等. 2009. 中国近海秋季小型底栖动物分布及与环境因子的关系研究[J]. 海洋科学, 33(9): 62-70.
[10]王小谷, 王春生, 张东声, 等. 2010. 长江口及其陆架春季小型底栖生物丰度和生物量[J]. 生态学报, 30(17): 4717-4727.
[11]张志南, 李永贵, 图立红, 等. 1989. 黄河口水下三角洲及其邻近水域小型底栖动物的初步研究[J]. 海洋与湖沼, 20(3): 197-208.
[12]张志南, 周红. 2004. 国际小型底栖生物研究的某些进展[J]. 中国海洋大学学报: 自然科学版, 34(4): 799-806.
[13]中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2008. GB17378.5-2007海洋监测规范[S]. 北京: 中国标准出版社: 50-55.
[14]CAI L Z, FU S J, YANG J, et al. 2012. Distribution of meiofaunal abundance in relation to environmental factors in Beibu Gulf, South China Sea[J]. Acta Oceanologica Sinica, 31(6): 92-103.
[15]FINDLAY S E G. 1982. Influence of sampling scale on apparent distribution of meiofauna on a sandflat[J]. Estuaries, 5(4): 322-324.
[16]GERLACH S A. 1971. On the importance of marine meiofauna for benthos communities[J]. Oecologia (Berl.), 6(1): 176-190.
[17]HIGGINS R P, THIEL H. 1988. Introduction to the Study of Meiofauna[M] .Washington, D C: Smithsonian Press: 1-488.
[18]LEDUC D, ROWDEN A A, PROBERT P K, et al. 2012. Further evidence for the effect of particle-size diversity on deep-sea benthic biodiversity[J]. Deep-Sea Research Ⅰ, 63: 164-169.
[19]LIU X S, ZHANG Z N, HUANG Y. 2005. Abundance and biomass of meiobenthos in the spawning ground of anchovy (Engraulis japanicus) in the southern Huanghai Sea[J]. Acta Oceanologica Sinica, 24(3): 94-104.
[20]MCINTYRE A D. 1969. Ecology of marine meiobenthos[J]. Biol Rev, 44(1): 245-290.
[21]MONTAGNA P A. 1995. Rates of metazoan meiofaunal microbivory: A review[J]. Vie et Milieu, 45(1): 1-9.
[22]MONTAGNA P A, BAUER J E, HARDI N D, et al. 1995. Meiofaunal and microbiol trophic interactions in a natural submarine hydrocarbon seep[J]. Vie et Milieu, 45(1): 17-25.
[23]PAVLYUK O N, TREBUKHOVA J A. 2006. Meiobenthos in Nha Trang Bay of the South China Sea (Vietnam)[J]. Ocean Sci J, 41(3): 139-148.
[24]PLATT H M, WARWICK R M. 1980. The significance of free-living nematodes to the littoral ecosystem[M]//The shore environment and ecosystem. New York: Academic Press: 729-759.
[25]RAFFAELLI D G, MASON C F. 1981. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods[J]. Mar Pollut Bull, 12(5): 158-163.
[26]SOLTWEDEL T. 2000. Metazoan meiobenthos along continental margins: A review[J]. Progress in Oceanography, 46: 59-84.
[27]TENORE K R, TIETJEN J H, LEE J J. 1977. Effect of meiofauna on incorporation of aged eelgrass, Zostera marina, detritus by the polychaete Nephthys incisa[J]. J Fish Res Board Can, 34(3): 563-567.
[28]WIDBOM B. 1984. Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna[J]. Marine Biology, 84(1): 101-108.