为了满足深海极端环境科学研究的需求, 设计了深海极端环境模拟装置。对系统结构以及工作原理进行分析, 介绍了培养釜、温度控制子系统和压力控制子系统。重点针对当前模拟装置压力控制精度不高的问题, 设计了高精度压力传感器, 并提出一种迭代自学习PID压力控制算法, 实现系统压力自动检测和连续控制, 同时带有观察窗的培养釜结构可以实现微生物状况实时观测。实验结果表明, 该系统能够实现深海极端环境参量高精度模拟, 可以为深海极端环境科学研究提供很好的平台。
According to research demand, a deep-sea extreme environment simulator was designed. This paper gave an analysis of system architecture principles, and expounded training vessel, temperature control system and pressure control system. Because of low pressure control accuracy for the current simulator, a high precision pressure sensor was designed and an iterative learning PID pressure control algorithm was put forward, which could automatically detect the system pressure and continuously control it. At the same time, a training vessel with two observation windows could take real-time observation of microorganism. Experiments showed that the system can control the vessel pressure accurately and simulate the deep-sea environment; it provides a good platform for deep-sea extreme environment research.
[1].冯颖芳, 康浩方, 张震, 等. 2001. 钛合金医用植入物材料的研究及应用[J]. 稀有金属, 25(5): 349-354.
[2].李世伦. 2006. 深海超临界高温高压极端环境模拟与监控技术研究[D]. 杭州: 浙江大学: 1-10.
[3].林建恒, 蒋国健, 高伟, 等. 2005. 海洋环境噪声垂直分布测试和分析[J]. 海洋学报, 27(3): 32-38.
[4].路甬祥, 胡大纮. 1998. 电液比例控制技术[M]. 北京: 机械工业出版社: 32-40.
[5].牟德海, 黄长江, 闫世平, 等. 2002. 大亚湾沉积物中氨基酸的垂直分布[J]. 分析测试学报, 21(3): 28-30.
[6].彭晓彤, 周怀阳. 2005. EPR 9~10°N热液烟囱体的结构特征与生长历史[J]. 中国科学D辑: 地球科学, 35(8): 720-728.
[7].魏光超. 2010. 带观测窗的高温高压生物培养釜结构分析与补强研究[D]. 杭州: 浙江大学: 1-5.
[8].肖湘, 王风平.2006. 深海微生物的研究开发[J]. 中国抗生素杂志, 31(2): 87-118.
[9].张琳娜, 刘武发. 1999. 传感检测技术及应用[M]. 北京: 中国计量出版社: 63-79.
[10].张守成, 曲成惠. 1989. 组合式传感器[J]. 传感应用技术, (3): 37-39.
[11].朱佛宏. 2006. 大西洋中脊梅内兹·格文热液露头的化学成分[J]. 海洋地质动态, 22(8): 19-20.
[12].ARIMOTO S, KAWAMURA S, MIYAZAKIF. 1984. Bettering operation of robotics by learning[J]. Robotics System, 1(2): 123-140.
[13].KELLEY D S, KARSON J A, BLACKMAN D K, et al. 2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N[J]. Nature, 412(12): 145-149.