海洋生物学

饵料对网纹藤壶幼虫发育和附着的影响

  • 曹文浩 ,
  • 王春忠 ,
  • 胡煜峰 ,
  • 张慧 ,
  • 严涛
展开
  • 1. 中国科学院南海海洋研究所 热带海洋生物资源与生态重点实验室, 广东 广州 510301;; 2. 福建省莆田市水产科学研究所, 福建 莆田 351100
曹文浩(1981~), 男, 江苏省吴县人, 硕士, 海洋污损生物与防除研究。E-mail: caowh@scsio.ac.cn

收稿日期: 2013-12-06

  修回日期: 2013-12-30

  网络出版日期: 2014-08-11

基金资助

国家自然科学青年基金(31100260); 广州市科技计划项目(2013J4300046); 广东省海洋渔业科技推广专项重点项目(A201101F03)

The effect of different diet on larval growth and settlement of barnacle Balanus reticulatus

  • CAO Wen-hao ,
  • WANG Chun-zhong ,
  • HU Yu-feng ,
  • ZHANG Hui ,
  • YAN Tao
Expand
  • 1. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 2. Putian Institute of Aquaculture Science of Fujian Province, Putian 351100, China

Received date: 2013-12-06

  Revised date: 2013-12-30

  Online published: 2014-08-11

摘要

研究了亚心形扁藻Platymonas subcordiformis、小球藻Chlorella sp.对网纹藤壶Balanus reticulatus幼虫发育和附着的影响。结果表明, 在幼虫存活率以及金星幼虫和Ⅵ期无节幼虫所占比例方面, 旺盛期亚心形扁藻对网纹藤壶幼虫的投喂效果均明显优于小球藻; 旺盛期亚心形扁藻培养的金星幼虫附着率明显高于老化扁藻(p<0.01)。因此, 以旺盛期亚心形扁藻作为幼虫培养饵料应更有利于藤壶幼体的生长发育。

本文引用格式

曹文浩 , 王春忠 , 胡煜峰 , 张慧 , 严涛 . 饵料对网纹藤壶幼虫发育和附着的影响[J]. 热带海洋学报, 2014 , 33(4) : 47 -50 . DOI: 10.11978/j.issn.1009-5470.2014.04.006

Abstract

This paper deals with the effects of Platymonas subcordiformis and Chlorella sp. on larval growth and settlement of barnacle Balanus reticulatus. We found Platymonas subcordiformis was obviously superior to Chlorella sp. as the diet in terms of larval survival rate and ratio of cyprids and Stage Ⅵ nauplii. As for the larval settlement rate, Platymonas subcordiformis during exponential phase was much better source of diet than that during decline phase. Therefore, it is more efficient to use Platymonas subcordiformis in exponential phase as the diet for larval culture of barnacle Balanus reticulatus.

Key words: barancle; nauplius; cyprid

参考文献

房宽, 唐学玺, 张璟, 等. 2013. 饵料微藻的种类和密度差异对褶皱臂尾轮虫幼虫摄食和选食行为的影响[J]. 海洋环境科学, 32(4): 497–500.
郭峰, 柯才焕, 周时强. 2007. 不同单胞藻饵料培养九孔鲍早期稚贝的研究[J]. 中国水产科学, 14(2): 263–269.
李捷, 孙松, 李超伦, 等. 2006. 不同饵料对桡足类无节幼体存活、发育的影响研究[J]. 海洋科学, 30(12): 13–20.
王庆志, 张明, 付成东, 等. 2013. 不同饵料和饥饿对魁蚶幼虫生长和存活的影响[J]. 生态学报, 33(13): 3963–3969.
韦金河, 汪廷, 冯伟民, 等. 2004. 小球藻大面积养殖技术[J]. 江苏农业科学, 32(2): 74–76.
解承林. 1978. 几种海洋浮游藻类的培养[J]. 动物学杂志, 13(1): 39–41.
徐怡, 胡忠军, 刘其根, 等. 2011. 温度和不同氮磷浓度培养的小球藻对透明溞生长和繁殖的影响[J]. 上海海洋大学学报, 20(5): 712–719.
严涛, 刘姗姗, 曹文浩. 2008. 中国沿海水产设施污损生物特点及防除途径[J]. 海洋通报, 27(1): 102–110.
严涛, 谢恩义, 曹文浩, 等. 2011. 华南沿海 4 种主要污损生物幼虫和孢子的采集与培养技术[J]. 热带海洋学报, 30(3): 56–61.
张辉, 孙雪峰, 尤宏争. 2008. 不同单细胞藻类对日本对虾仔虾生长及存活率的影响[J]. 饲料工业, 29(12): 24–27.
张萍萍, 李琪, 孔令锋, 等. 2011. 四种单胞藻和海洋红酵母对刺参浮游幼虫生长与变态成活的影响[J]. 中国海洋大学学报, 41(10): 30–34
郑严. 1977. 海洋饵料生物培养概况[J]. 海洋科学, 1(2): 55–60.
AZIS P K A, AL-TISAN I, AL-DAILI M, et al. 2003. Marine macrofouling: A review of control technology in the context of an on-line experiment in the turbine condenser water box of Al-Jubail phase-I power/MSF plants[J]. Desalination, 154 (3): 277–290.
BRAITHWAITE R A, MCEVOY L A. 2005. Marine biofouling on fish farms and its remediation[J]. Advanced in Marine Biology, 47: 215–252.
CAO WENHAO, YAN TAO, LI ZUFU, et al. 2013. Fouling acorn barnacles in China—a review[J]. Chinese Journal of Oceanology and Limnology, 31(4): 699–711.
CHRISTIE, A O, DALLEY R. 1987. Barnacle fouling and its prevention[M] // SOUTHWARD A J. Barnacle Biology. Rot-ter¬dam: Taylor & Francis: 419–433.
ELSER J J, HAYAKAWA K, URABE J. 2001. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment[J]. Ecology, 82(3): 898–903.
FITRIDGE I, DEMPSTER T, GUENTHER J, et al. 2012. The impact and control of biofouling in marine aquaculture: A review[J]. Biofouling, 28 (7): 649–669.
HUNTLEY M E, CIMINIELLO P, LOPEZ M D. 1987. Importance of food quality in determining development and survival of Calanus pacificus (Copepoda: Calanoida)[J]. Marine Biology, 95: 103–113.
JENNER H A, WHITEHOUSE J W, TAYLOR C J L, et al. 1998. Cooling water management in European power stations: biology and control[M] // KHALANSKI M, PARENT J F, SICLET F. Hydroécologie Appliquée 1-2. Paris: Electricité de France: 1–225.
MALLET A L, CARVER C E, HARDY M. 2009. The effect of floating bag management strategies on biofouling, oyster growth and biodeposition levels[J]. Aquaculture, 287: 315–323.
ORME J A C, MASTERS I, GRIFFITHS R T. 2001. Investigation of the effect of biofouling on the efficiency of marine current turbines[C] // FRENCH C. Proceedings of MAREC 2001, International Conference on Marine Renewable Energies. London: Institute of Marine Engineers: 91–99.
RITTSCHOF D, CLARE A S, GERHART D J, et al. 1992. Barnacle in vitro assays for biologically active substances: Toxicity and settlement inhibition assays using mass cultured Balanus amphitrite amphitrite Darwin[J]. Biofouling, 6(2): 115–122.
SCHULTZ M P, BENDICK J A, HOLMB E R, et al. 2011. Economic impact of biofouling on a naval surface ship[J]. Biofouling, 27 (1): 87–98.
THIYAGARAJAN V, VENUGOPALAN V P, SUBRAMONIAM T, et al. 1996. Rearing of barnacle Balanus reticulatus Utinomi larvae using the diatom Chaetoceros ighamias food[J]. Indian J Mar Sci, 25(4): 365–367.
THOMASON J C, HILLS J M, CLARE A S, et al. 1998. Hydrodynamic consequences of barnacles colonization[J]. Hydrobiologia, 375 / 376: 191–201.
YAN TAO, YAN WENXIA. 2003. Fouling of offshore structures in China-a review[J]. Biofouling, 19 (Suppl): 133–138.

文章导航

/