海洋生物学

南海北部及台湾海峡夏季自养与异养区域的分布*

  • 王娜 ,
  • 林伟 ,
  • 陈炳章 ,
  • 黄邦钦
展开
  • 福建省海陆界面生态环境重点实验室、滨海湿地生态系统教育部重点实验室, 厦门大学, 福建 厦门 361102
王娜(1989~), 女, 甘肃省平凉市人, 硕士, 主要从事海洋浮游生物群落呼吸研究。E-mail: wna1989.happy@163.com
*感谢厦门大学胡建宇教授、朱佳和孙振宇工程师提供温盐数据,谢聿原提供以14C方法测得的初级生产力数据,王磊提供叶绿素a数据,黄旭光给予有益建议.

收稿日期: 2013-05-29

  修回日期: 2014-01-07

  网络出版日期: 2014-08-11

基金资助

厦门大学基础创新科研基金(2011121007、2012121058); 中国科学院南海海洋研究所热带海洋环境国家重点实验室开放课题(LTO1103); 海洋公益性行业科研专项经费项目(201105021-03)

Metabolic states of the Taiwan Strait and the northern South China Sea in summer 2012

  • WANG Na ,
  • LIN Wei ,
  • CHEN Bing-zhang ,
  • HUANG Bang-qin
Expand
  • Fujian Provincial Key Laboratory for Coastal Ecology and Environment Studies and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China

Received date: 2013-05-29

  Revised date: 2014-01-07

  Online published: 2014-08-11

摘要

采用黑白瓶方法, 在2012年夏季测定了台湾海峡及南海北部16个站位群落总的初级生产力(gross primary production, GPP)和群落呼吸(community respiration, CR), 总的初级生产力GPP水柱积分平均值为106.6±7.51mmol O2 m-2·d-1 (mean±SE, 以下同), 群落呼吸CR平均为131.1±5.95mmol O2 m-2·d-1, 净群落生产力(net community production, NPP)变化范围为-179.0~377.6mmol O2 m-2·d-1(中值为-40.4mmol O2 m-2·d-1)。受上升流的影响, 琼东海域呈现明显的自养状态。在珠江口, 由于珠江冲淡水的流入, 该区域也呈现自养状态。相反, 台湾海峡近岸以及粤东近岸均为异养区域。由此可见, 异养区域的群落呼吸并不是完全由本地初级生产力决定, 有机碳在空间上的输送对海洋浮游生物群落新陈代谢的影响可能极为重要。

本文引用格式

王娜 , 林伟 , 陈炳章 , 黄邦钦 . 南海北部及台湾海峡夏季自养与异养区域的分布*[J]. 热带海洋学报, 2014 , 33(4) : 61 -68 . DOI: 10.11978/j.issn.1009-5470.2014.04.008

Abstract

We investigated the metabolic states of plankton communities in the Taiwan Strait and the northern South China Sea by measuring gross primary productivity (GPP), community respiration (CR) and bacterial production (BP) at 16 stations in these areas. GPP averaged 106.6 mmol O2 m-2·d-1 with a standard error of 7.51 mmol O2 m-2·d-1. CR averaged 131.1 mmol O2 m-2·d-1 with a standard error of 5.95 mmol O2 m-2·d-1. Net community productivity varied from -179.0 to 377.6 mmol O2 m-2·d-1with a median value of -40.4 mmol O2 m-2·d-1. Our results showed that the area affected by Qiongdong upwelling was autotrophic. In the areas affected by the Pearl River discharge, the plankton community was also autotrophic. By contrast, other areas including the Taiwan Strait nearshore waters and the South China Sea open waters were heterotrophic. Therefore, community respiration was not entirely determined by the local primary productivity in the study areas. Our results suggest that the spatial transport of organic carbon plays an important role in determining the metabolic state of the plankton community.

参考文献

1 台湾海峡南部浮游植物类群组成及其对上升流的响应研究[D]. 厦门: 厦门大学: 24.
2 APPLE J K, DEL GIORGIOP A, KEMPW M. 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuar [J]. Aquat Micro Ecol, 43(3): 243-254.
3 ARANGUREN-GASSIS M, SERRT P, FERNÁNDEZ E, et al. 2012. Balanced plankton net community metabolism in the oligotrophic North Atlantic subtropical gyre from Lagrangian observations[J]. Deep Sea Res Ⅰ, 68: 116-122.
4 ARÍSTEGUI J, HARRISON W G, 2002. Decoupling of primary production and community respiration in the ocean: implications for regional carbon studies[J]. Aquat Micro Ecol, 29: 199-209.
5 BJORNSEN P K, KUPARINEN J. 1991. Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean[J]. Mar Ecol Prog Ser, 71: 185-194.
6 CAI Y, NING X, LIU CHENG-GANG, et al. 2007. Distribution pattern of photosynthetic picoplankton and heterotrophic bacteria in the Northern South China Sea[J]. Plankton Res, 49 (3): 282-298.
7 DEL GIORGIO P A, COLE J J, CIMBLERIS A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems [J]. Nature, 385: 148-151.
8 DUARTE C M, AGUSTI S. 1998. The CO 2 balance of unproductive aquatic ecosystems[J]. Science, 281: 234-236.
9 DUARTE C M, PRAIRIE Y T. 2005. Prevalence of heterotrophy and atmospheric CO 2 emissions from aquatic Ecosystems[J]. Ecosystems 8: 862-870.
10 DUARTE C M, REGAUDIE-DE-GIOUX A. 2009. Thresholds of gross primary production for the metabolic balance of marine planktonic communities[J]. Limnol Oceanogr, 54(3): 1015-1022.
11 DUARTE C M, REGAUDIE-DE-GIOUX A, ARRIETA J M, et al. 2013. The oligotrophic ocean is heterotrophic[J]. Annu Rev Mar Sci, 5: 551-569.
12 DUCKLOW H W, DICKSON M L, KIRCHMAN D L, et al. 2000. Constraining bacterial production, conversion efficiency and respiration in the Ross Sea, Antarxtia, January-February, 1997[J]. Deep Sea Res Ⅱ, 47: 3227-3247.
13 FURUYA K, HAYASHI M, YABUSHITA Y. 1998. HPLC determination of phytoplankton pigments using N, N-dime-thy-lfol-mamide [J]. Oceanogr, 54: 199-203.
14 HOPPE H G, BREITHAUPT P, WALTHER K, et al. 2008. Climate warming in winter affects the coupling between phytoplankton and bacteria during the spring bloom: A mesocosm study[J]. Aquat Microb Ecol, 51(2): 105-115. doi:10.3354/ame01198.
15 KIRCHMAN D L. 1993. Leucine incorporation as a measure of biomass production by heterotrophic bacteria[M] // KEMP P F, SHERR B F, SHERR E B, et al. Hand book of methods in aquatic microbial ecology. Boca Raton: Lewis Publishers: 509-512.
16 KRITZBERG E S, DUARTE C M, WASSMANNP. 2010. Changes in Arctic marine bacterial carbon metabolism in response to increasing temperature [J]. Polar Biol, 33: 1673-1682. doi:10.1007/s00300-010-0799-7.
17 LI W K W, HARRISON W G, HEADE J H. 2006. Coherent sign switching in multiyear trends of microbial plankton[J]. Science, 311: 1157-1160.
18 LÓPEZ-URRUTIA Á, MORÁN X A G. 2007. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling [J]. Ecology, 88(4): 817-822.
19 MARAÑÓN E, HOLLIGAN P M. 1999. Photosynthetic parameters of phytoplankton from 50°N to 50°S in the Atlantic Ocean[J]. Mar Ecol Prog Ser,176: 191-203.
20 MARIE D, PARTENSKY F, JACQUET S, et al. 1997. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green Ⅰ [J]. Appl Environ Microbiol, 63: 186-193.
21 OUDOT G, GERARD R, MORIN P. 1988. Precise shipboard determination of dissolved oxygen (Winkler procedure) for productivity studies with a commercial system [J]. Limnol Oceanogr, 33 (1): 146-150.
22 RIVKIN R B, LEGENDRE L. 2001. Biogenic carbon cycling in the upper ocean: Effects of microbial respiration [J]. Science, 291(5512): 2398-2400. doi:10.1126/science.291. 5512.2398.
23 SERRET P, FERNÁNDEZ E, SOSTRES J A, et al. 1999. Seasonal compensation of microbial production in a temperate sea [J]. Mar Ecol Prog Ser,187: 43-57.
24 SERRET P, FERNÁNDEZ E, ROBINSON C, et al. 2006. Local production does not control the balance between plankton photosynthesis and respiration in the open Atlantic Ocean[J]. Deep Sea Res Ⅱ 53: 1611-1628.
25 SHERR E B, SHERR B F. 1996. Temporal offset in oceanic production and respiration processed implied by seasonal changes in atmospheric oxygen: the role of heterotrophic microbes[J]. Aquat Microb Ecol 11: 91-100.
26 VAQUER-SUNYER R, DUARTE C M, WASSMANN P, et al. 2010. Experimental evaluation of planktonic respiration response to warming in the European Arctic Sector[J]. Polar Biol, 33: 1661-1671.
27 VOSJAN J H, OLANCZUKNEYMAN K M. 1991. Influence of temperature on respiratory ETS-Activity of microorganisms from Admiralty Bay, King George Island, Antarctica [J]. Neth J Sea Res, 28(3): 221-225.
28 WILLIAMS P J L B. 1998. The balance of plankton respiration and photosynthesis in the open oceans[J]. Nature, 394: 55-57.
29 WILLIAMS P J L B, MORRIS P J, KARL D M. 2004. Net community production and metabolic balance at the oligotrophic ocean site, station ALOHA[J]. Deep Sea Res Ⅰ 51: 1563-1578.
30 WILLIAMS P J L B, QUAY P D, WESTBERRY T K, et al. 2013. The Oligotrophic Ocean is autotrophic [J]. Annu Rev Mar Sci, 5: 16.1-16.15.
31 WONG G T F, KU T L, MULHOLLAND M, et al. 2007. The South East Asian time-series study (SEATS) and the biogeochemistry of the South China Sea—An overview[J]. Deep Sea Res, Part Ⅱ—Topical Studies in Oceanography, 54: 1434-1447.
32 YAGER P L, DEMING J W. 1999. Pelagic microbial activity in an arctic polynya: testing for temperature and substrate interactions using a kinetic approach [J]. Limnol Oceanogr, 44(8): 1882-1893.
33 YUAN X C, YIN K D, HARRISON P J, et al. 2010. Bacterial production and respiration in sub-tropical Hong Kong waters: influence of the Pearl River discharge and sewage impacts [J]. Aquat Microb Ecol, 58: 167-179.
34 YUAN X C, YIN K D, HARRISON P J, et al. 2011a.Variations in apparent oxygen utilization and effects of P addition on bacterial respiration in subtropical Hong Kong waters [J]. Estuar Coast, 34: 536-543.
35 YUAN X C, YIN K, CAI W J, et al. 2011b. In?uence of seasonal monsoons on net community production and CO 2 in subtropical Hong Kong coastal waters[J]. Biogeosciences, 8: 289-300.

文章导航

/