Rossby波是地球流体中的一种低频大尺度波动, 在全球海洋动力过程的调整中发挥着关键作用。利用1993~2011年多卫星高度计融合的月均海平面高度异常数据, 基于二维Radon变换方法提取了热带印度洋南北纬5°~20°区域的Rossby波纬向传播速度。结合斜压Rossby波的理论模型, 利用1993~2008年多年平均的简单海洋再分析数据集的温盐资料, 计算了自由线性的一阶斜压Rossby波的理论波速值。通过对比理论波速与高度计的观测波速, 发现在印度洋5°~20°S间理论值与观测值比较接近, 在5°~20°N间两者差别较大, 其误差可能来源于两个方面: 1) 该区域较多陆地阻隔引起了Rossby波的绕射和反射; 2) 多边界激发的多个Rossby波发生相互作用。利用卫星高度计观测提取的Rossby波波速计算了热带印度洋南北纬5°~20°范围内的Rossby波的变形半径, 给出了Rossby变形半径与纬度的解析表达式。该式能够很好地描述热带印度洋不同纬度的Rossby变形半径, 为今后热带印度洋Rossby波速的应用提供了理论和观测依据。
We estimated the Rossby wave phase speed in the tropical Indian Ocean (5°~20°S, and 5°~20°N) based on two- dimensional Radon Transform method, using monthly average sea level anomaly data (1993~2001) from multi-altimeters. We also calculated the first baroclinic gravity-wave phase speed, in combination with Rossby wave theoretical model, and the density by using climatologically averaged temperature and salinity profiles from the Simple Ocean Data Assimilation (SODA) reanalysis data (1993~2008). We found that Rossby wave phase speeds from model simulation and altimeter observations are in good agreement in 5°~20°S, but are quite different in 5°~20°N. The difference is possibly caused by 1) Rossby waves are diffracted and reflected by salient topographic features, and 2) interaction of Rossby waves generated by different boundaries. We computed the Rossby wave deformation radius utilizing the estimated phase speed, and further presented an analytic quadratic formula between latitude and deformation radius.
[1] 乔方利, 王永刚. 2003. 大洋Rossby波动纬向传播速度的分布特征[J].海洋科学进展, 21: 387–392.
[2] 张庆华, 李丙瑞, 等. 2007. 第一斜压Rossby波在大洋传播中的调整[J]. 海洋科学进展, 25(1): 15–19.
[3] 白学志, 陈永利, 等. 2010. 热带印度洋Rossby波的基本特征[J]. 海洋科学集刊, 50: 23–31.
[4] 扬大升, 贺海晏, 等. 1996. 地球物理流体动力学[M]. 北京: 气象出版社, 56–59.
[5] 徐青, 程永存, 等. 2012. 热带印度洋偶极子区域海表面温度特征与海流相关性分析[J]. 河海大学学报: 自然科学版, 4: 455–460.
[6] P G, CIPOLLINI P, CROMWELL D. 2001. Use of the 3D radon transform to examine the properties of oceanic Rossby waves[J]. J Atmos Ocean Tech, 18(9): 1558–1566.
[7] D B, DESZOEKE R A, SCHLAX M G, et al. 1998a. Geographical variability of the first baroclinic Rossby radius of deformation [J]. J Phys Oceanogr, 28(3): 433–460.
[8] D B, DESZOEKE R A, SCHLAX M G. 1998b. Geographical variability of the first baroclinic Rossby radius of deformation [J]. J Phys Oceanogr, 28(3): 433–460.
[9] D B, SCHLAX M G. 1996. Global observations of oceanic Rossby waves [J]. Science, 272(5259): 234–238.
[10] S S, FELLOW M A, DARWIN G H. 1897. On the application of harmonic analysis to the dynamical theory of the Tides. Part I. On Laplace's' oscillations of the first species, and on the dynamics of Ocean Currents [J]. Proc R Soc London Ser, 61(369/377): 236–238.
[11] S G H. 1978. Forced oceanic waves [J]. Rev Geophys, 16(1): 15–46.
[12] N H, GOSWAMI B N, VINAYACHANDRAN P N, et al. 1999. A dipole mode in the tropical Indian Ocean [J]. Nature, 401: 360–363.
[13] D, LIU Q, LIU Y, et al. 2004. Connection between interannual variability of the western Pacific and eastern Indian Oceans in the 1997–1998 El Niño event [J]. Prog Nat Sci, 14(5): 423–429.
[14] X, XIE Q, HE Z, et al. 2008. Free and forced Rossby waves in the western South China Sea inferred from Jason-1 satellite altimetry data [J]. Sensors, 8(6): 3633–3642.
[15] C. 1997. The vertical partition of oceanic horizontal kinetic energy [J]. J Phys Oceanogr, 27(8): 1770–1794.
[16] S P, CHANG C H, Xie Q, et al. 2007. Intraseasonal variability in the summer South China Sea: Wind jet, cold filament, and recirculations [J]. J Geophys Res, 112(C10).
[17] SHANGPING, ANNAMALAI H, SCHOTT F A, et al. 2002. Structure and mechanisms of South Indian Ocean climate variability [J]. J Climate, 15(8): 864–878.