文章基于2004年1月~2006年11月的“国际努加登沙层结与输运”(international Nusantara stratification and transport, INSTANT)计划以及2006年11月~2011年7月的“印度尼西亚贯穿流观测”(monitoring the Indonesian throughflow, MITF)计划的实测数据, 从长时间序列研究印度尼西亚贯穿流的变化。在望加锡海峡中, 印度尼西亚贯穿流的周期信号分布非常丰富, 涵盖潮汐、季节内、季节和年际信号。对于季节变化, 东南季风期间温跃层深度上最大南向流速约为1.0m•s-1, 而西北季风期间最大南向流速约为0.8m•s-1。印度尼西亚贯穿流的年际变化与尼诺3.4区指数(NINO 3.4)呈正相关, 最大相关系数大约在NINO 3.4前1~2个月; 水深150m以上, 印度尼西亚贯穿流与偶极子模态指数(dipole mode index, DMI)呈负相关, 200m以下呈正相关, 在时间上较DMI滞后约1~2个月。季节变化的经验正交分解(empirical orthogonal function, EOF)前2个模态方差的总贡献率为97%, 其中第一模态为65%, 第二模态为32%; 年际变化的EOF前2个模态的方差贡献率为90%, 其中第一模态为51%, 第二模态为39%。季节变化的第二模态和年际变化的第一模态表征赤道印度洋开尔文波模态, 该模态的空间结构在垂向会发生相位反转; 季节变化的第一模态和年际变化的第二模态表征赤道太平洋罗斯贝波(Rossby waves)的厄尔尼诺与南方涛动(El Niño and southern oscillation, ENSO)模态, 其垂向的空间结构变化比较一致。
Thanks to the INSTANT (international Nusantara stratification and transport) and MITF (monitoring the Indonesian throughflow) programs, more data became available for studying the Indonesian throughflow (ITF) through the Makassar Strait. The ITF in the Makassar Strait shows a broad range of activities, from tidal, intraseasonal, seasonal, to annual time scales. The maximum velocity in the Makassar Strait is thermocline intensified, at -1.0 m•s-1 during the southeast monsoon and -0.8 m•s-1 during the northwest monsoon. The interannual variability of the ITF has a positive correlation with NINO 3.4, leading NINO 3.4 by 1~2 months, while the ITF in the upper 150 m has a negative correlation with the dipole model index (DMI), but the ITF below 200 m has a positive correlation with the DMI, lagging DMI by 1~2 months. Empirical orthogonal function (EOF) analysis of seasonal variability reveals that the first two dominant modes account for 97% of the total variance, namely, the first and second modes accounted for 65% and 32% of the total variance, respectively. EOF of the interannual variability shows that the first mode accounts for 51% of the total variance, and the second, for 39%. The second mode of the seasonal variability and the first mode of the interannual variability are dominated by the intrusions of Kelvin waves from the tropical Indian Ocean. The first mode of the seasonal variability and the second mode of the interannual variability reflect ENSO modulation of Rossby waves from the tropical Pacific Ocean.
[1] 杜岩, 方国洪. 2011. 印度尼西亚海与印度尼西亚贯穿流研究概述[J]. 地球科学进展, 26(11): 1131-1142.
[2] 方国洪, 魏泽勋, 黄企洲, 等. 2002. 南海南部与外海间的体积和热、盐输运及其对印尼贯穿流的贡献[J]. 海洋与湖沼, 33(3): 296-302.
[3] 李薇, 刘海龙, 张学洪. 2004. 一个涡相容的海洋环流模式模拟的印度尼西亚贯穿流[J]. 科学通报, 49(19): 2001-2006.
[4] 刘凯, 孙照渤, 杜岩. 2011. 基于INSTANT数据对ITF流出海峡海流的功率谱分析[J].热带海洋学报, 30(6): 1-9.
[5] 刘钦燕, 黄瑞新, 王东晓, 等. 2006. 印度尼西亚贯穿流与南海贯穿流的相互调制[J]. 科学通报, 51(增刊Ⅱ): 44-50.
[6] 王永刚, 方国洪, 魏泽勋, 等. 2005. 印度尼西亚贯穿流的年际变化: 一个全球变网格海洋模式的初步模拟结果[J]. 海洋科学进展, 23(2): 127-134.
[7] CRAVATTE S, BOULANGER J P, PICAUT J. 2004. Reflection of intraseasonal equatorial Rossby waves at the western boundary of the Pacific Ocean[J]. Geophysical Research Letters, 31: L10301.
[8] DAHLEN F A, SIMONS F J. 2008. Spectral estimation on a sphere in geophysics and cosmology[J]. Geophysical Journal International, 174: 774-807.
[9] DUCHON C. 1979. Lanczos filtering in one and two dimensions[J]. Journal of Applied Meteorology, 18: 1016-1022.
[10] ENGLAND M, HUANG F. 2005. On the interannual variability of the Indonesian throughflow and its linkage with ENSO[J]. Journal of Climate, 18: 1435-1444.
[11] GORDON A L, FINE R A. 1996. Pathways of water between the Pacific and Indian Oceans in the Indonesian seas[J]. Nature, 379: 146-149.
[12] GORDON A L, GIULIVI C F, ILAHUDE A G. 2003. Deep topographic barriers within the Indonesian seas[J]. Deep Sea Research Part Ⅱ, 50: 2205-2228.
[13] GORDON A L. 2005. Oceanography of the Indonesian seas and their throughflow[J]. Oceanography, 18: 14-27.
[14] GORDON A L, SUSANTO R D, FFIELD A, et al. 2008. Makassar Strait throughflow, 2004 to 2006[J]. Geophysical Research Letters, 35: L24605.
[15] GORDON A L, SPRINTALL J, VAN AKEN H M, et al. 2010. The Indonesian throughflow during 2004~2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 50: 115-128.
[16] GORDON A L, HUBER B A, METZGER E J, el al. 2012. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 39: L11602.
[17] HAN WEIQING. 2005. Origins and dynamics of the 90-day and 30~60 day variations in the equatorial Indian Ocean[J]. Journal of Physical Oceanography, 35: 708-728.
[18] ISKANDAR I, MCPHADEN M J. 2011. Dynamics of wind-forced intraseasonal zonal current variations in the equatorial Indian Ocean[J]. Journal of Geophysical Research, 116: C06019.
[19] LIU QINYAN, HUANG RUIXIN, WANG DONGXIAO, et al. 2006. Interplay between the Indonesian throughflow and the South China Sea throughflow[J]. Chinese Science Bulletin, 51: 50-58.
[20] LIU QINYAN, WANG DONGXIAO, ZHOU WEN, et al. 2010. Covariation of the Indonesian throughflow and South China Sea throughflow associated with the 1976/77 regime shift[J]. Advances in Atmospheric Sciences, 27(1): 87-94.
[21] LIU QINYAN, HUANG RUIXIN, WANG DONGXIAO. 2012. Implication of the South China Sea throughflow for the interannual variability of the regional upper-ocean heat content[J]. Advances in Atmospheric Sciences, 29(1): 54-62.
[22] MASUMOTO Y, KAGIMOTO T, YOSHIDA M, et al. 2001. Intraseasonal eddies in the Sulawesi Sea simulated in an ocean general circulation model[J]. Geophysical Research Letters, 28(8): 1631-1634.
[23] MCCREARY J P, MIYAMA T, FURUE R, et al. 2007. Interactions between the Indonesian throughflow and circulations in the Indian and Pacific Oceans[J]. Progress in Oceanography, 75: 70-114.
[24] MEYERS G. 1996. Variation of Indonesian throughflow and the El Niño-Southern Oscillation[J]. Journal of Geophysical Research, 101: 12255-12263.
[25] NAGURA M, MCPHADEN M J. 2012. The dynamics of wind- driven intraseasonal variability in the equatorial Indian Ocean[J]. Journal of Geophysical Research, 117: C02001.
[26] PUJIANA K, GORDON A L, SPRINTALL J, et al. 2009. Intraseasonal variability in the Makassar Strait thermocline[J]. Journal of Marine Research, 67: 757-777.
[27] PUJIANA K, GORDON A L, SPRINTALL J. 2013. Intraseasonal Kelvin wave in Makassar Strait[J]. Journal of Geophysical Research, 118: 2023-2034.
[28] QU TANGDONG, DU YAN, GARY MEYERS, et al. 2005. Connecting the tropical Pacific with Indian Ocean through South China Sea[J]. Geophysical Research Letters, 32: L24609.
[29] QU TANGDONG, GAN JIANPING, ISHIDA A, et al. 2008. Semiannual variation in the western tropical Pacific Ocean[J]. Geophysical Research Letters, 35: L16602.
[30] ROBERTSON R, FFIELD A. 2008. Baroclinic tides in the Indonesian seas: tidal fields and comparisons to observations[J]. Journal of Geophysical Research, 113: C07031.
[31] SAJI N H, GOSWANI B N, VINAYACHANDRAN P N, et al. 1999. A dipole mode in the tropical Indian Ocean[J]. Nature, 401: 360-363.
[32] SHINODA T, HURLBURT H E, METZGER E J, et al. 2011. Anomalous tropical ocean circulation associated with La Niña Modoki[J]. Journal of Geophysical Research, 116: C12001.
[33] SHINODA T, HAN W, METZGER E J, et al. 2012. Seasonal variation of the Indonesian throughflow in Makassar Strait[J]. Journal of Physical Oceanography, 42: 1099-1123.
[34] SPRINTALL J, GORDON A L, MURTUGUDDE R, et al. 2000. A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997[J]. Journal of Geophysical Research, 105: 17217-17230.
[35] SPRINTALL J, WIJFFELS S, GORDON A L, et al. 2004. INSTANT: a new international array to measure the Indonesian throughflow[J]. Eos Transactions American Geophysical Union, 85(39): 369.
[36] SUSANTO R D, GORDON A L, SPRINTALL J. 2000. Intraseasonal variability and tides in Makassar Strait[J]. Geophysical Research Letters, 27(10): 1499-1502.
[37] SUSANTO R D, GORDON A L. 2005. Velocity and transport of the Makassar Strait throughflow[J]. Journal of Geophysical Research, 110: C01005.
[38] SUSANTO R D, FFIELD A, GORDON A L, et al. 2012. Variability of Indonesian throughflow within Makassar Strait, 2004~2009[J]. Journal of Geophysical Research, 117: C09013.
[39] VAN AKEN H M, BRODJONEGORO I S, JAYA I. 2009. The deep water motion through the Lifamatola passage and its contribution to the Indonesian throughflow[J]. Deep Sea Research, Part Ⅰ, 56: 1203-1216.
[40] WANG WEIWEN, WANG DONGXIAO, ZHOU WEN, et al. 2011. Impact of the South China Sea throughflow on the Pacific low-latitude western boundary current: a numerical study for seasonal and interannual time scales[J]. Advances in Atmospheric Sciences, 28(6): 1367-1376.
[41] WIJFFELS S, MEYERS G. 2004. An intersection of oceanic waveguides: variability in the Indonesian throughflow region[J]. Journal of Physical Oceanography, 34: 1232-1253.
[42] WYRTKI K. 1987. Indonesian throughflow and the associated pressure gradient[J]. Journal of Geophysical Research, 92(C12): 12941-12946.
[43] YUAN DONGLIANG, WANG JING, XU TENGFEI, et al. 2011. Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian throughflow[J]. Journal of Climate, 24: 3593-3608.