海洋物理学

海水酸化对鹿角珊瑚光谱特性影响的分析

  • 刘素敏 ,
  • 杨顶田
展开
  • 1.中国科学院南海海洋研究所, 广东广州510301;2.中国科学院大学, 北京100049
刘素敏(1987~), 女, 河南省鹤壁市人, 硕士生, 主要从事海洋遥感研究。E-mail: xuyandai521@163.com

收稿日期: 2013-12-27

  修回日期: 2014-05-04

  网络出版日期: 2015-01-07

基金资助

国家重点基础研究发展计划项目(2010CB951203、2013CB956503); 国家自然科学基金项目(41176161); 广东省科技计划项目(2012A031100008)

Spectral features of Acropora austera impacted by ocean acidification

  • LIU Su-min ,
  • YANG Ding-tian
Expand
  • 1. State Key Laboratory of Tropical Oceanography ,Guangzhou 510301, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China;

Received date: 2013-12-27

  Revised date: 2014-05-04

  Online published: 2015-01-07

摘要

海水酸化造成全球珊瑚礁严重退化, 应用卫星遥感手段可以快速地对珊瑚礁进行监测。在野外做酸度对比实验具有条件不易控制、周期长等局限性。文章提出一种室内测量珊瑚光谱的方法, 通过比较不同酸度梯度下珊瑚光谱的变化, 为研究海水酸化对珊瑚的影响提供了一种新的思路。试验采用7.6、7.9和8.1的酸度梯度, 结果表明: 在pH为8.1和7.9环境条件下, 珊瑚的光谱趋势大体一致, 总体上珊瑚光谱波峰出现了向长波方向的红移。但是在pH为7.6的条件下, 珊瑚的光谱在650~700nm之间出现一个反常的吸收谷, 这是由于pH 7.6的酸度条件适宜一些藻类生长, 藻类附着在珊瑚表面, 从而影响了其光谱特性。

本文引用格式

刘素敏 , 杨顶田 . 海水酸化对鹿角珊瑚光谱特性影响的分析[J]. 热带海洋学报, 2014 , 33(6) : 41 -47 . DOI: 10.11978/j.issn.1009-5470.2014.06.006

Abstract

The global coral reefs are severely degraded by ocean acidification in recent years and satellite remote sensing can monitor coral reefs’ degradation timely. Due to the limitation of conducting acidification comparative experiments in the field, this paper proposes a method of measuring coral reef spectrum in the laboratory, which provides a new way for analyzing the influence of acidification on coral reefs by comparing the coral spectrum under different pH conditions. The experiments adopt three different acidities of 7.6, 7.9 and 8.1. And the results show the spectra of coral reefs have similar spectral shapes in general when the pH values are 8.1 and 7.9. When the pH is 7.9, the coral spectrum peak appears to move into the direction of long a wavelength. But when the pH is 7.6, there is an abnormal absorption valley between 650~700 nm in the coral spectrum, caused by the absorption of some algae. The results show that pH of 7.6 is a suitable acidity for the growth of some algae that can attach to the surface of coral reefs and affect the spectral properties of coral reefs.

参考文献

[1] 何盛毅, 林传旭, 何毛贤, 等.2011. 海洋酸化对马氏珠母贝胚胎及早期幼虫发育的影响[J]. 生态学杂志, 30(4): 747-751.
[2] 李京, 陈云浩, 刘志刚, 等. 2010. 海岛与海岸带环境遥感: 第6章: 珊瑚礁遥感监测[M]. 北京: 科学出版社: 73-74.
[3] 李俊生, 张兵, 申茜, 等. 2013. 太湖水面多角度遥感反射率 光谱测量与方向特性分析[J]. 光谱学与光谱分析, 33(9): 2506-2511.
[4] 梅安新, 彭望禄, 秦其明, 等. 2001. 遥感导论: 第七章: 遥感应用[M]. 北京: 高等教育出版社: 238.
[5] 石莉, 桂静, 吴克勤. 2011. 海洋酸化及国际研究动态[J]. 海洋科学进展, 29(1): 122-128.
[6] 时翔, 谭烨辉, 黄良民, 等. 2008. 磷酸盐胁迫对造礁石珊 瑚共生虫黄藻光合作用的影响[J]. 生态学报, 28(6): 2581-2586.
[7] 吴钟解, 陈春华, 丁翔宇. 2011. 三亚蜈支洲珊瑚礁观光旅游活动对珊瑚及其生态的影响探讨[J]. 海洋开发与管理, 28(3): 57-59.
[8] 杨超宇, 杨顶田, 赵俊. 2010. 光学浅水海草高光谱识别[J]. 热带海洋学报, 29(2): 74-79.
[9] 张成龙, 黄晖, 黄良民, 等. 2012. 海洋酸化对珊瑚礁生态系统的影响研究进展[J]. 生态学报, 32(5): 1606-1615.
[10] 邹亚荣, 梁超, 朱海天. 2012. 基于Quick Bird影像上珊瑚礁发育状况监测实验研究[J]. 海洋学报, 34(2): 57-62.
[11] ALBERT A, MOBLEY C D. 2003. An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallowcase-2 waters[J]. Optics Express, 11(22): 2873-2890.
[12] ANTHONY K R N, KLINE D I, DIAZ-PULIDO G, et al.2009. Ocean acidification causes bleaching and productivity loss in coral reefbuilders[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(45): 17442-17446.
[13] BALCH W M, GORDON H R, BLWLER B C. 2005. Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spetroradiometer data[J]. Journal of Geophysical Research: Oceans, 110: C07001.
[14] CALDEIRA K, WICKETT M E. 2003. Anthropogenic carbon and ocean pH[J]. Nature, 425: 365.
[15] CLARK C D, MUMBY P J, CHISHOLM J R M, et al. 2000. Spectral discrimination of coral mortality states following a server bleaching event[J]. International Journal of Remote Sensing, 21: 2321-2327.
[16] GAO RONGZHEN, SUN DONGHUAI, WANG DONGXIAO, et al. 2005. Cloudiness regime shift during 1946~1992 recorded by coral in the South China Sea[J]. Acta Oceanologica Sinica, 24 (5): 27-34.
[17] GU DEJUN, WANG DONGXIAO, SUN DONGHUAI, et al. 2006. The coral grayness in northern South China Sea and its description of interdecadal variation of precipitation in south China[J]. Chinese Science Bulletin, 51: 59-65.
[18] HOCHBERG E J, ATKINSON M J. 2003. Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra[J]. Remote Sensing of Environment, 85(2): 174-189.
[19] HOLDEN H, LEDREW E. 1998. Spectraldiscrimination of healthy and non-healthy corals based on cluster analysis, principle components analysis, and derivative spectroscopy[J]. Remote Sensing of Environment, 65: 217-224.
[20] KARPOUZLI E, MALTHUS T J, PLACE C J. 2004. Hyperspectral discrimination of coral reef benthic communities in the western Caribbean[J]. Coral Reefs, 23: 141-151.
[21] KLEYPAS J A, FEELY R A, FABRY V J, et al. 2006. Impacts of ocean acidification on coral reefs and other marine Calcifiers: a guide for future research[R]. St. Petersburg: NSF, NOAA, and the U.S. Geological Survey: 88.
[22] RAZ-BAHAT M, EREZ J, RINKEVICH B. 2006. In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata[J]. Cell and Tissue Research, 325: 361-368.
[23] ROUGH G J, RUNNING S, MATAO N P. 1991. What does remote sensing do for ecology[J]. Ecology, 72(6): 1981-1922.
[24] SHAFIR S, VAN RIJN J, RINKEVICH B. 2006. Coral nubbins as source material for coral biological research: a prospectus[J]. Aquaculture, 259(1-4): 444-448.
[25] WANG XIN, WANG DONGXIAO, GAO RONGZHEN, et al. 2010. Anthropogenic climate change revealed by coral gray values in the South China Sea[J]. Chinese Science Bulletin, 55 (13): 1304-1310.
文章导航

/