海洋水文学

吕宋海峡浮标轨迹的拉格朗日拟序结构分析

展开
  • 1. 热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 510301;
    2. 中国科学院大学, 北京 100049;
黄高龙(1988~), 男, 浙江省淳安县人, 硕士研究生, 从事物理海洋学研究。E-mail: hgl.13@163.com

收稿日期: 2014-02-20

  修回日期: 2014-05-27

  网络出版日期: 2015-02-10

基金资助

中国科学院战略性先导科技专项(A类)(XDA11020201); 国家自然科学基金项目(41176162、41206071)

Lagrangian analysis of drifter trajectories near the Luzon Strait

Expand
  • 1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;

Received date: 2014-02-20

  Revised date: 2014-05-27

  Online published: 2015-02-10

摘要

文章利用海表流速得到的拉格朗日拟序结构(Lagrangian coherent strctures, LCSs), 并结合漂流浮标轨迹资料, 分析吕宋海峡附近水域表层环流和水输运特征。结果显示, LCSs能够很好地描绘吕宋海峡附近水域的表层水体输运结构, 解释了浮标运动轨迹的变化。冬季, 吕宋海峡附近水域存在着条带状LCSs, 以东南-西北走向由太平洋穿过吕宋海峡进入南海; 夏季, 跨海峡的LCSs在形态上转变为西南-东北走向, 并由南海经吕宋海峡进入太平洋。LCSs形成的输运通道与壁垒揭示了吕宋海峡水交换季节变化的原因, 太平洋与南海表层水主要沿着以上两种形态LCSs构成的输运通道进行交换。

本文引用格式

黄高龙, 韦惺, 詹海刚 . 吕宋海峡浮标轨迹的拉格朗日拟序结构分析[J]. 热带海洋学报, 2015 , 34(1) : 15 -22 . DOI: 10.11978/j.issn.1009-5470.2015.01.003

Abstract

Drifter data and the Lagrangian coherent structures (LCSs) are used to discuss the upper-layer circulation and water exchange near the Luzon Strait. Our results show that the LCSs, which are extracted from the surface currents, can depict the transport structure of the study area, and explain the motion of drifters reasonably. There exist southeast-northwest orientated LCSs, which extend from the Pacific Ocean to the South China Sea through the Luzon Strait during winter; during the summer, the orientation of those strait-crossing LCSs turns into southwest-northeast. The LCSs-formed transport pathways and barriers give reasonable explanation of the seasonal tendency of water exchange in the Luzon Strait, and the two types of the LCSs act as the pathways of the surface water exchange between the Pacific Ocean and the South China Sea.

参考文献

[1] .鲍献文, 鞠霞, 吴德星. 2009. 吕宋海峡120°E断面水交换特征[J]. 中国海洋大学学报: 自然科学版, 39(1): 1-6.
[2] .郭景松, 冯颖, 袁立业, 等. 2013. 入侵南海的黑潮陶柳及其脱落涡旋[J]. 海洋与湖沼, 44(3): 537-544.
[3] .李立, 伍伯瑜. 1989. 黑潮的南海流套?——南海东北部环流结构探讨[J]. 台湾海峡, 8: 89-95.
[4] .李立, 吴日升, 郭小钢. 2000. 南海的季节环流——TOPEX/ POSEIDON卫星测高应用研究[J]. 海洋学报, 22(6): 13-26.
[5] .刘秦玉, 杨海军, 李薇, 等. 2000. 吕宋海峡维向海流及质量输运[J]. 海洋学报, 22(2): 1-8.
[6] .刘增宏, 许建平, 朱伯康. 2004. Argos表面漂流浮标在黑潮区的若干观测结果[J]. 东海海洋, 22(4): 1-10.
[7] .马超, 吴德星, 鞠霞. 2010. 利用Argos浮标资料对黑潮入侵南海问题的分析[J]. 海洋湖沼通报, 2010(02): 1-5.
[8] .仇德忠, 杨天鸿, 郭忠信. 1984. 夏季南海北部一支向西流动的海流[J]. 热带海洋, 3(4): 65-73.
[9] .苏京志, 侯一筠, 方国洪, 等. 2007. 南海表层流场的卫星跟踪浮标观测结果分析[J]. 海洋与湖沼, 33(2): 121-127.
[10] .徐晓光, 廖光洪, 许东峰. 2010. 西北太平洋反气旋涡的Argos浮标观测结果分析[J]. 海洋学研究, 28(4): 1-13.
[11] .ANDRADE C F, SHEINBAUM J, ZAVALA S L. 2013. A Lagrangian approach to the Loop Current eddy separation[J]. Nonlinear Processes in Geophysics, 20: 85-96.
[12] .BERON-VERA F J, OLASCOAGA M J, GONI G J. 2008. Oceanic mesoscale eddies as revealed by Lagrangian Coherent Structures[J]. Geophysical Research Letters, 35: L12603.
[13] .BERON-VERA F J , OLASCOAGA M J , GONI G J. 2010. Surface ocean mixing inferred from different multisatellite altimetry measurements[J] . J Phys Oceanogr, 40: 2466-2480 .
[14] .CENTURIONI L R, NIILER P P, LEE D-K. 2004. Observations of inflow of Philippine Sea Surface Water into the South China Sea through the Luzon Strait[J]. Journal of Physical Oceanography, 34(1): 113-121.
[15] .COULLIETTE C, LEKIEN F, PADUAN J D, et al. 2007. Optimal pollution mitigation in Monterey bay based on coastal radar data and nonlinear dynamics[J]. Environmental Science and Technology, 41: 6562-6572.
[16] .D’OVIDIO F, FERNÁNDEZ V, HERNÁNDEZ-GARCÍA E, et al. 2004. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents[J]. Geophys Res Lett, 31: L17203. doi:10.1029/2004GL020328.
[17] .FANG GUOHONG, FANG WENGDONG, FANG YUE. 1998. A survey of studies on the South China Sea upper ocean circulation[J]. Acta Oceanographica Taiwanica, 37(1): 1-16.
[18] .GUO J S, CHEN X Y, JANET S et al. 2012. Surface in flow into the South China Sea through the Luzon Strait in winter[J]. Chinese Journal of Oceanology and Limnology, 30(1): 163-168.
[19] .HALLER G, YUAN G. 2000. Lagrangian structures and mixing in two-dimensional turbulence[J]. Physica D, 147: 352-370.
[20] .HALLER G. 2001. Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence[J]. Phys Fluids, 1333: 65-85.
[21] .HARRISON C S, DAVID A S, MITARIAR S. 2013. Filamentation and eddy-eddy interaction in marine larval accumulation and transport[J]. Mar Ecol Prog Ser. 472: 27-44. doi:10.3354/ meps10061.
[22] .HU X M, XIONG X J, QIAO F L, et al. 2008. Surface current field and seasonal variability in the Kuroshio and adjacent region derived from satellite tracked drifter data[J]. Acta Oceanologica Sinica, 27(3): 11-29.
[23] .JIA YINGLAI, LIU QINYU. 2004. Eddy shedding from the Kuroshio bend at Luzon Strait[J]. J Oceanogr, 67: 601-611.
[24] .LEHAHN Y, D’ OVIDIO F, LE´VY M, et al. 2007. Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data[J]. Journal of Geophysical Research, 112: C08005.
[25] .LEKIEN F, COULLIETTE C, MARIANO A J, et al. 2005. Pollution release tied to invariant manifolds: a case study for the coast of Florida[J]. Physica D, 210: 1-20.
[26] .LI L, NOWLIN W D, SU J L. 1998. Anticyclonic rings from the Kuroshio in the South China Sea[J]. Deep-Sea Research, Part (I), 45: 1469-1482.
[27] .MEZIĆ I, LOIRE S, FONOBEROV V A, et al. 2010. A new mixing diagnostic and gulf oil spill movement[J]. Science, 330 (6003): 486-489.
[28] .NAN F, XUE H, XIU P, et al. 2011. Oceanic eddy formation and propagation southwest of Taiwan[J]. Journal of Geophysical Research, 116: C12045. doi:10.1029/2011JC007386.
[29] .NIILER P P. 2001. The world ocean surface circulation[M] // SIEDLER G, CHURCH J, GOULD J. Ocean circulation and climate: Observing and modelling the global ocean. San Diego: Academic Press: 193-204.
[30] .NITANI H. 1972. Beginning of the Kuroshio [C] // STOMMEL H, YASHIDA K. Physical Aspects of the Japan Current. Seattle: University of Washington Press: 129-163.
[31] .OLASCOAGA, M J. 2010. Isolation on the West Florida Shelf with implications for red tides and pollutant dispersal in the Gulf of Mexico[J]. Nonlinear Processes in Geophysics, 17: 685-696.
[32] .PRANTS S V. 2013. Dynamic systems theory methods for studying mixing and transport in the ocean[J]. Phys Scr, 87: 0381115. doi:10.1088/0031-8949/87/03/03815.
[33] .QIAN YUKUN, PENG SHIQIU, LI YINENG. 2013. Eulerian and Lagrangian Statistics in the South China Sea as deduced from surface drifters[J]. J Phys Oceanogr, 43: 726-743.
[34] .QIU Y, LI L, CHEN C T A, et al. 2011. Currents in the Taiwan Strait as observed by surface drifters[J]. J Oceanogr, 67(4): 395-404.
[35] .RYPINA I I, PRATT L J, PULLEN J, et al. 2010. Chaotic advection in an archipelago[J]. J Phys Oceanogr, 40: 1988-2006.
[36] .SHADDEN S C, LEKIEN F, MARSDEN, J E. 2005. Definition and properties of Lagrangian coherent structures from finite- time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D, 212: 271-304.
[37] .SUDRE J, MAES C, GARCON V. 2013. On the global estimates of geostrophic and Ekman surface current[J]. Limnology and Oceanography: Fluids and Environments, 3: 1-20.
[38] . WANG GUIHUA, WANG DONGXIAO, ZHOU TIANJUN. 2012. Upper layer circulation in the Luzon Strait[J]. Aquatic Ecosystem Health &Management, 15(1): 39-45.
[39] .WEI XING, NI PEITONG, ZHAN HAIGANG. 2013. Monitoring cooling water discharge using Lagrangian coherent structures: A case study in DAYA Bay, China[J]. Marine Pollution Bulletin, 75: 105-113.
[40] .WIGGINS S. 2005. The dynamical systems approach to Lagrangian transport in oceanic flows[J]. Annu Rev Fluid Mech, 37: 295-328.
[41] .YUAN D L, HAN W Q, HU D X. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. J Geophys Res, 111: C11007. doi:10.1029/2005 JC003412.
[42] .ZHENG Q A, TAI C-K, HU J Y, et al. 2011. Satellite altimeter observation of nonlinear Rossby eddy-Kuroshio interaction at Luzon Strait[J]. J Oceanogr, 67(4): 365-376.
文章导航

/