海洋物理学

中国近海黄色物质吸收光谱经验斜率特征研究*

  • 周虹丽 ,
  • 朱建华 ,
  • 李铜基
展开
  • 国家海洋技术中心, 天津 300112
周虹丽(1978~), 女, 河北省怀安县人, 工程师, 硕士, 主要从事海洋水色遥感研究, Email:zhouhongli_0313@163.com

收稿日期: 2013-03-12

  修回日期: 2014-05-13

  网络出版日期: 2015-02-10

基金资助

ST11区块海洋光学调查与研究(908-01-ST11、908-01-ST11-II); 我国近海海洋光学与遥感调查研究项目(908-ZC-I-04)

Spectral properties of colored dissolved organic matter in Chinese offshore waters

  • ZHOU Hong-li ,
  • ZHU Jian-hua ,
  • Li Tong-ji
Expand
  • National Ocean Technology Center, Tianjin 300112, China

Received date: 2013-03-12

  Revised date: 2014-05-13

  Online published: 2015-02-10

摘要

黄色物质是中国近海水体光学特性的重要影响因素。基于在中国近海海洋光学调查中获取的895个站位的黄色物质吸收系数数据, 对黄色物质吸收光谱经验斜率(Sg)进行了分析, 研究表明: 1. 中国近海Sg的范围在0.0066~ 0.0284nm-1之间, 在大部分研究海区Sg呈现正态分布趋势, 全海区Sg均值为0.0142nm-1, 标准差为0.0044nm-1; 2. 中国近海黄色物质组分受陆源和海源共同影响, 不同海区Sg表现出一定的差异; 3. Sgag(440)仅在两个海域表现出一定的弱负相关性, 在其他绝大部分中国近海海域, 两者的相关性较弱。

本文引用格式

周虹丽 , 朱建华 , 李铜基 . 中国近海黄色物质吸收光谱经验斜率特征研究*[J]. 热带海洋学报, 2015 , 34(1) : 23 -29 . DOI: 10.11978/j.issn.1009-5470.2015.01.004

Abstract

Colored dissolved organic matter (CDOM) is an important factor that affects the optical properties of Chinese offshore waters. Based on the absorption coefficient data of CDOM from 895 stations surveyed during China’s offshore marine optical investigation, we analyzed the variation characteristics of the spectral exponential slope (Sg) of CDOM. Results show that the range of the spectral exponential slope of CDOM in Chinese offshore waters is from 0.0066 to 0.0284 nm-1. The value of Sg obeys a normal distribution in most of the study areas. The average value of Sg is 0.0142 nm-1 and its standard deviation is 0.0044 nm-1 in the whole study areas. The component of CDOM is influenced by terrigenous sediment and marine sediment in China’s offshore, and the distribution characteristics of Sg vary spatially. Except for the weak negative correlations in two areas, there is no obvious relationship between Sg and ag(440) in most of the Chinese offshore waters surveyed.

参考文献

[1] .陈欣. 2012. 长江口及其邻近海域CDOM光学特性与示踪应用的初步研究[D]. 杭州: 浙江大学: 16-18.
[2] .国家海洋局. 2010. HY/T 133-2010海水中颗粒物和黄色物质光谱吸收系数测量 分光光度法[S]. 北京: 中国标准出版社: 3-6.
[3] .国家海洋局908专项办公室. 2006. 我国近海海洋光学调查技术规程[S]. 北京: 海洋出版社: 10-15.
[4] .黄妙芬, 宋庆君, 毛志华, 等. 2011. 应用CDOM 光学特性估算水体COD—以辽宁省盘锦市双台子河和辽东湾为例[J]. 海洋学报, 33(3): 47-54.
[5] .孔德星, 杨红, 吴建辉. 2008. 长江口海域黄色物质光吸收特性[J]. 海洋环境科学. 27(6): 629-631.
[6] .李猛, 郭卫东, 夏恩琴, 等. 2006. 厦门湾有色溶解有机物的光吸收特性研究[J]. 热带海洋学报, 25(1): 9-14.
[7] .王林, 赵冬至, 傅云娜, 等. 2007. 黄色物质吸收系数 a g (440)与斜率率 S g 相关关系[J]. 大连海事大学学报, 33(S2): 179-182.
[8] .吴永森, 张士魁, 张绪琴, 等. 2002. 海水黄色物质光吸收特性实验研究[J]. 海洋与湖沼, 33(4): 402-406.
[9] .邢小罡, 赵冬至, 刘玉光, 等. 2008. 渤海非色素颗粒物和黄色物质的吸收特性研究[J]. 海洋环境科学, 27(6): 595-598.
[10] .张运林, 秦伯强. 2007. 梅梁湾、大太湖夏季和冬季CDOM特征及可能来源分析[J]. 水科学进展, 18(3): 415-423.
[11] .周虹丽, 朱建华, 李铜基, 等. 2005. 青海湖水色要素吸收光谱特性分析—黄色物质、非色素颗粒和浮游植物色素[J]. 海洋技术, 24(2): 55-58, 83.
[12] .朱建华, 李铜基. 2004. 黄东海非色素颗粒与黄色物质的吸收系数光谱模型研究[J]. 海洋技术, 23(2): 7-13.
[13] .朱建华, 周虹丽, 李铜基, 等. 2012. 中国近海黄色物质吸收光谱特征分析[J]. 光学技术, 38(3): 295-299.
[14] .BABIN M, STRAMSKI D, FERRARI G M, et al. 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal particles and dissolved organic matter in coastal waters around Europe[J]. Geophys Res, 108: 3211-3231.
[15] .BRICAUD A, MOREL A, PRIEUR L. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains[J]. Limnol Oceanogr, 26 (1): 43-53.
[16] .CARDER K L, STEWARD R G, HARVEY G R, et al. 1989. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll[J]. Limnol Oceanogr, 34: 68-81.
[17] .DEL CASTILLO C E, COBLE P G. 2000. Seasonal variability of the colored dissolved organic matter during the 1994-95 NE and SW Monsoons in the Arabian Sea[J]. Deep-Sea Research, Ⅱ(47): 1563-1579.
[18] .FICHOT C G, BENNER R. 2012.The spectral slope coefficient of chromophoric dissolved organic matter (S275- 295) as a tracer of terrigenous dissolved organic carbon in river- influenced ocean margins[J]. Limnol Oceanogr, 57(5): 1453-1466.
[19] .GRANSKOG M A, MACDONALD R W, MUNDY C J, et al. 2007. Distribution, characteristics and potential impacts of chromophoric dissolved organic matter (CDOM) in Hudson Strait and Hudson Bay[J]. Continental Shelf Research, 27: 2032-2050.
[20] .HELMS J R, STUBBINS A, RITCHIE J D, et al. 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnol Oceanogr, 53(3): 955-969.
[21] .HONG HUASHENG, YANG LIYANG, GUO WEIDONG, et al. 2012. Characterization of dissolved organic matter under contrasting hydrologic regimes in a subtropical watershed using PAR AF AC model[J]. Biogeochemistry, 109: 163-174.
[22] .KOWALCZUK P, JOANNAS E., COOPERB W J, et al. 2005. Characterization of chromophoric dissolved organic matter (CDOM) in the Baltic Sea by excitation emission matrix fluorescence spectroscopy[J]. Marine Chemistry, 96: 273-292.
[23] .KOWALCZUK P, STEDMON C A, MARKAGER S. 2006. Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll[J]. Marine Chemistry, 101: 1-11.
[24] .LIN HUI, GUO WEIDONG, HU MINGHUI, et al. 2012. Spatial and temporal variability of colored dissolved organic matter absorption properties in the Taiwan Strait[J]. Acta Oceanol, 31(5): 98-106.
[25] .MATSUOKA A, BRICAUD A, BENNER R, et al. 2012. Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics[J]. Biogeosciences, 9: 925-940.
[26] .NELSON J R, GUARDA S. 1995. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States[J]. Geophys Res, 100(C5): 8715-8732.
[27] .SCHWARZ J N, KOWALCZUK P, COTA G F, et al. 2002. Two models for absorption by coloured dissolved organic matter (CDOM)[J]. Oceanologia, 44 (2): 209-241.
[28] .STEDMON C A, MARKAGER S. 2001. The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: An algorithm for differentiation between marine and terrestrially derived organic matter[J]. Limnol Oceanogr, 46(8): 2087-2093.
[29] .TOMING K, ARS H, PAAVEL B, et al. 2009. Spatial and temporal variation in coloured dissolved organic matter in large and shallow Estonian waterbodies[J]. Boreal Environment Research, 14: 959-970.
[30] .TWARDOWSKI M S, BOSS E, SULLIVAN J M, et al. 2004. Modeling the spectral shape of absorption by chromophoric dissolved organic matter[J]. Marine Chemistry, 89: 69-88.
[31] .YACOBI Y Z, ALBERTS J J, TAKACS M, et al. 2003. Absorption spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers: the impact of molecular size distribution[J]. Journal of Limnology, 62(1): 41-46.
文章导航

/