海洋生物学

南海三亚湾鹿回头海域风信子鹿角珊瑚反射率分析

展开
  • 1. 中国科学院热带海洋生物资源与生态重点实验室, 广东 广州 510301;
    2. 中国科学院大学, 北京100049;
    3. 中国科学院海南热带海洋生物重点实验站, 海南 三亚 572000;
    4. 热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 510301; 5. 中国科学院三亚深海科学与工程研究所, 海南 三亚 572000;
陈标(1987~),男,河北省保定市人,硕士研究生,主要从事珊瑚反射率识别研究。E-mail: chen.28.happy@163.com

收稿日期: 2013-08-23

  修回日期: 2014-06-19

  网络出版日期: 2015-02-10

基金资助

国家科技支撑计划项目(2012BAC19B08); 海洋公益性行业科研专项经费项目(201305030-3); 国家青年基金项目(41306144、41406186)

Analysis of reflectance by Acropora hyacinthus in Luhuitou, Sanya of the South China Sea

Expand
  • 1. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301;
    2. University of Chinese Academy of Sciences, Beijing 100049;
    3. National Experiment Station of Tropical Marine Biology, Hainan Island, Sanya 572000;
    4. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences), Guangzhou 510301; 5. Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000;

Received date: 2013-08-23

  Revised date: 2014-06-19

  Online published: 2015-02-10

摘要

珊瑚礁反射率特征识别工作的开展, 将促进遥感技术在珊瑚礁监测与管理中的应用。国外已有学者对特定区域不同珊瑚礁底质反射率进行识别分类, 而我国珊瑚礁反射率特征研究尚未见诸报道, 亟须相关研究来弥补这一空白。文章以南海三亚湾鹿回头海域常见风信子鹿角珊瑚Acropora hyacinthus为主要研究对象, 利用光谱仪测量其反射率。分析发现健康风信子鹿角珊瑚反射率在575、605、650nm处出现特征波峰; 死亡风信子鹿角珊瑚反射率明显高于健康风信子鹿角珊瑚反射率。利用大型多元统计软件PRIMER 6对健康风信子鹿角珊瑚、死亡风信子鹿角珊瑚、珊瑚礁底砂进行Bray-Curtis相似聚类(CLUSTER)分析, 结果显示, 在80%相似水平上可以对其进行区分。一阶导数分析表明健康与死亡风信子鹿角珊瑚敏感波段为490~560nm。

本文引用格式

陈标, 陈永强, 黄晖, 谢强, 江玉凤, 雷新明, 江雷, 张诗泽, 周国伟 . 南海三亚湾鹿回头海域风信子鹿角珊瑚反射率分析[J]. 热带海洋学报, 2015 , 34(1) : 71 -76 . DOI: 10.11978/j.issn.1009-5470.2015.01.010

Abstract

An application of remote sensing in monitoring and management of coral was developed with reflectance identification of coral substrate. Some foreign scholars have discriminated reflectance of coral substrate, while the reflectance of different coral substrate discrimination in the South China Sea did not exist. This study explored reflectance of Acropora hyacinthus at Luhuitou Sanya using spectrum instrument. Healthy Acropora hyacinthus exhibited positive reflectance features at 570, 600 and 650 nm. Reflectance by dead Acropora hyacinthus was obviously higher than that by healthy Acropora hyacinthus, and did not jave positive reflectance features. The differential analysis of coral substrate reflectance use PRIMER6 software packages Clustering. Healthy Acropora hyacinthus reflectance, dead Acropora hyacinthus reflectance and sand reflectance can be distinguished at the level of 80% Bray-Curits similarity. Based on reflectance derivative analysis, the first derivative of reflectance between 490 and 560 nm provided good identification of healthy and dead Acropora hyacinthus.

参考文献

[1] .黄建波. 2006. 中国海岛· 沙洲· 珊瑚礁遥感监测应用中的典型问题研究[D]. 青岛: 中国海洋大学: 50-64.
[2] .王圆圆, 刘志刚, 李京, 等. 2007. 珊瑚礁遥感研究进展[J]. 地球科学进展, 22(4): 396-402.
[3] .吴荣军, 李瑞香, 朱明远, 等. 2006. 应用 PRMER 软件进行浮游植物群落结构的多元统计分析 [J]. 海洋与湖沼, 37(4): 316-321.
[4] .张敬怀, 高阳, 方宏达, 等. 2009. 珠江口大型底栖生物群落生态特征[J]. 生态学报, 29 (6): 2989-2999.
[5] .CARILLI J, DONNER S D, HARTMANN A C. 2012. Historical temperature variability affects coral response to heat stress[J]. PLoS ONE, 7(3): 1-9.
[6] .CLARK C D, MUMBY P J, CHISHOLM J R M, et al. 2000. Spectral discrimination of coral mortality states following a severe bleaching event[J]. International Journal of Remote Sensing, 21(11): 2321-2327.
[7] .HAMYLTON S. 2012. A comparison of spatially explicit and classic regression modelling of live coral cover using hyperspectral remote-sensing data in the Al Wajh lagoon, Red Sea[J]. International Journal of Geographical Information Science, 26(11): 2161-2175.
[8] .HEDLEY J D, MUMBY P J, JOYCE K E, et al. 2004. Spectral unmixing of coral reef benthos under ideal conditions[J]. Coral Reefs, 23(1): 60-73.
[9] .HEDLEY J D, ROELFSEMA C M, PHINN S R, et al. 2012. Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design [J]. Remote Sensing, 4(1): 271-302.
[10] .HOCHBERG E J, ATKINSON M J. 2000. Spectral discrimination of coral reef benthic communities [J]. Coral Reefs, 19(2): 164-171.
[11] .HOCHBERG E J, ATKINSON M J, APPRILL A, et al. 2004. Spectral reflectance of coral[J]. Coral Reefs, 23(1): 84-95.
[12] .HOLDEN H, LEDREW E. 1998. Spectral discrimination of healthy and non-healthy corals based on cluster analysis, princial components analysis, and derivative spectroscopy[J]. Remote Sens Environ, 65: 217-224.
[13] .HOLDEN H, LEDREW E. 1999. Hyperspectral identification of coral reef festures[J]. International journal of remote sensing, 25: 2545-2563.
[14] .HOLDEN H, LEDREW E. 2001. Hyperspectral discrimination of healthy versus stressed corals using in situ reflectance[J]. Journal of Coastal Research, 17(4): 850-858.
[15] .HUGHES T P, HUANG H, YOUNG M A. 2012. The wicked problem of China's disappearing coral reefs[J]. Conservation Biology, 27(2): 261-269.
[16] .KARPOUZLI E, MALTHUS T. 2003. Hyperspectral discrimination of coral reef benthic communities[J]. Geoscience and Remote Sensing Symposium, 4: 2377-2379.
[17] .KARPOUZLI E, MALTHUS T J, PLACE C J. 2004. Hyperspectral discrimination of coral reef benthic communities in the western Caribbean[J]. Coral Reefs, 23(1): 141-151.
[18] .KLEMAS V. 2011. Remote sensing techniques for studying coastal ecosystems: An overview[J]. Journal of Coastal Research, 27(1): 2-17.
[19] .LEIPER I, PHINN S, DEKKER A G. 2012. Spectral reflectance of coral reef benthos and substrate assemblages on Heron Reef, Australia[J]. International Journal of Remote Sensing, 33(12): 3946-3965.
[20] .MILLER M W, PINIAK G A, WILLIAMS D E. 2011. Coral mass bleaching and reef temperatures at Navassa Island, 2006[J]. Estuarine, Coastal and Shelf Science, 91(1): 42-50.
[21] .PHILIPSON P, LINDELL T. 2003. Can coral reefs be monitored from space?[J]. Ambio, 32(8): 586-593.
[22] .RAVINDRAN J, KANNAPIRAN E, MANIKANDAN B, et al. 2012. Bleaching and secondary threats on the corals of Palk Bay: A survey and Proactive conservation needs[J]. Indian Journal of Geo-Marine Sciences, 41(1): 19-26.
[23] .SPILLMAN C M. 2011. Advances in Forecasting Coral Bleaching Conditions for Reef Management[J]. Bulletin of the American Meteorological Society, 92(12): 1586-1591.
[24] .SRIDHAR P N, ALI M M, RAO M V, et al. 2012. Photosynthetically active radiation, a critical parameter for mass coral bleaching in the North Indian Ocean[J]. Current Science, 102(1): 114-118.
[25] .STAMBLER N, SHASHAR N. 2007. Variation in spectral reflectance of the hermatypic corals, Stylophora pistillata and Pocillopora damicornis[J]. Journal of Experimental Marine Biology and Ecology, 351(1): 143-149.
[26] .WETTLE M, FERRIER G, LAWRENCE A J, et al. 2003. Fourth derivative analysis of Red Sea coral reflectance spectra[J]. International Journal of Remote Sensing, 24(19): 3867-3872.
[27] .WILKINSON C. 2008. Status of coral reefs of the world: 2008[M]. Townsville: Institute of Marine Science Press: 5-8.
[28] .YAMANO H, TAMURA M, KUNII Y, et al. 2003. Spectral reflectance as a potential tool for detecting stressed corals[J]. Galaxea, 5: 1-10.
文章导航

/