海洋水文学

基于CMIP5资料的热带大洋非均匀增暖及其成因的分析

  • 杜美芳 ,
  • 徐海明 ,
  • 周超
展开
  • 1. 南京信息工程大学气象灾害预报预警与评估协同创新中心和气象灾害教育部重点实验室, 江苏 南京 210044; 2. 东台市气象局, 江苏 盐城 224200; 3. 吕泗国家基准气候站, 江苏 启东 226241
杜美芳(1985~), 女, 江苏省淮安市人, 硕士研究生, 研究方向为海气相互作用。E-mail: 526978794@qq.com

收稿日期: 2014-05-30

  修回日期: 2014-10-25

  网络出版日期: 2015-06-08

基金资助

国家重大科学研究计划项目(2012CB955602); 国家自然科学基金项目(41275094)

Analysis of non-uniform sea surface temperature warming over the tropical oceans and its causes based on CMIP5 data

  • DU Mei-fang ,
  • XU Hai-ming ,
  • ZHOU Chao
Expand
  • 1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Dongtai Meteorological Bureau, Yancheng 224200, China; 3. Lüsi National Reference Climatological Station, Qidong 226241, China

Received date: 2014-05-30

  Revised date: 2014-10-25

  Online published: 2015-06-08

摘要

利用第五次耦合模式比较计划(coupled model intercomparison project phase 5, 简称CMIP5)中的月平均资料, 基于合成分析、相关分析等现代气象统计方法, 对热带太平洋、印度洋和大西洋年平均海温增暖不均匀特征及其成因进行分析。9个海洋模式集合的平均结果表明: 在全球增暖背景下, 3个热带大洋的海温增暖均表现出不均匀性, 且增暖原因存在较大差异。热带太平洋赤道及其以北地区以海洋动力作用为主, 赤道以南地区则以大气热力作用为主, 而且海水上翻/下沉运动对海温增暖的作用在东、西太平洋之间存在明显差异; 热带印度洋大面积海域的海温变化难以通过海气热通量交换来解释, 海水上翻/下沉运动与温度平流对海温增暖的作用比较一致(二者同时利于海温增暖); 热带大西洋赤道附近地区的海温增暖是表层温度平流和上翻/下沉运动共同作用的结果, 赤道以北的大西洋海温变化则以温度平流的作用为主, 而赤道以南的大西洋海温的变化主要是海水上翻/下沉作用引起的。

本文引用格式

杜美芳 , 徐海明 , 周超 . 基于CMIP5资料的热带大洋非均匀增暖及其成因的分析[J]. 热带海洋学报, 2015 , 34(3) : 1 -12 . DOI: 10.11978/j.issn.1009-5470.2015.03.001

Abstract

Using the global monthly mean datasets from the Coupled Model Intercomparison Project Phase 5 (CMIP5), the characteristics of non-uniform sea surface temperature warming over the tropical Pacific, Indian and Atlantic oceans and its causes are analyzed. We use various meteorological statistical methods, such as synthetic analysis and correlation analysis. Multi-model results show that annual mean spatial distributions of the variation in SST exhibit non-uniform patterns over the three tropical oceans under global warming. However, the causes responsible for these non-uniform patterns are quite different. The oceanic dynamic processes play a leading role in the equator and over the area north of the equator in the tropical Pacific Ocean, while the atmospheric thermal effect becomes more important over the area south of the equator. In addition, the oceanic upwelling/downwelling processes play different roles in the eastern and western tropical Pacific. For most part of the tropical Indian Ocean, variation in sea surface temperature is not well explained by the air-sea heat fluxes and oceanic dynamics such as upwelling/downwelling, and temperature advection also plays an important role. For the tropical Atlantic Ocean, the SST variability in the area near the equator mainly results from oceanic dynamics such as temperature advection and upwelling/downwelling. Temperature advection plays a leading role in the variation of sea surface temperature north of the equator, while upwelling/downwelling plays a dominant role south of the equator.

参考文献

1 李海洋, 谢强, 王东晓. 2006. 1980~1999年热带太平洋次表层盐度年际变化同化数据分析[J]. 海洋学报, 28(6): 5-11.
2 刘珊, 王辉, 姜华, 等. 2013. 北太平洋海表温度及各贡献因子的变化[J]. 海洋学报, 35 (1): 63-75.
3 谢强, 李海洋, 王东晓. 2009. 热带太平洋盐含量的年际变化[J]. 海洋科学进展, 27(2): 155-164.
4 赵永平, 陈永利, 翁学传. 1997. 中纬度海气相互作用研究进展[J]. 地球科学进展, 12(1): 32-36.
5 郑建秋, 任保华, 李根. 2009. 北太平洋海气界面湍流热通量的年际变化[J]. 大气科学, 33(5): 1111-1121.
6 周天军, 张学洪. 2002. 印度洋海气热通量交换研究[J]. 大气科学, 26 (2): 161-170.
7 BERRY D I, KENT E C. 2009. A new air-sea interaction gridded dataset from ICOADS with uncertainty estimates[J]. Bulletin of the American Meteorological Society, 90: 645-656.
8 CANE M A, CLEMENT A C, KAPLAN A, et al. 1997. Twentieth-century sea surface temperature trends[J]. Science, 275: 957-960.
9 CAYAN D R. 1992a. Latent and sensible heat flux anomalies over the Northern oceans: Driving the sea surface temperature[J]. Journal of Physical Oceanography, 22: 859-881.
10 CAYAN D R. 1992b. Variability of latent and sensible heat fluxes estimated using bulk formulate[J]. Atmosphere-Ocean, 30: 1-42.
11 COLLINS M, CMIP Modelling Groups. 2005. El Niño- or La Niña- like climate change?[J]. Climate Dynamics, 24: 89-104.
12 DE SZOEKE S P, XIE SHANGPING, MIYAMA T, et al. 2007. What maintains the SST front north of the equatorial cold tongue?[J]. Journal of Climate, 20: 2500-2514.
13 DICKINSON R E. 1981. Convergence rate and stability of ocean- atmosphere coupling schemes with a zero-dimensional climate model[J]. Journal of the Atmospheric Sciences, 38: 2112-2120.
14 DU YAN, XIE SHANGPING. 2008. Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models[J]. Geophysical Research Letters, 35: L08712.
15 DU YAN, XIE SHANGPING, HUANG GANG, et al. 2009. Role of air-sea interaction in the long persistence of El-Niño-induced North Indian Ocean warming[J]. Journal of Climate, 22: 2023-2038.
16 DU YAN, XIE SHANGPING, YANG YALI, et al. 2013. Indian Ocean variability in the CMIP5 multi-model ensemble: The basin mode[J]. Journal of Climate, 26: 7240-7266.
17 FRANKIGNOUL C, KESTENARE E. 2002. The surface heat flux feedback. Part Ⅰ: Estimates from observations in the Atlantic and the North Pacific[J]. Climate Dynamics, 19: 633-647.
18 HELD I M, SODEN B J. 2006. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 19: 5686-5699.
19 JOHNSON N C, XIE SHANGPING. 2010. Changes in the sea surface temperature threshold for tropical convection[J]. Natural Geoscience, 3: 842-845.
20 KNUTSON T R, MANABE S. 1995. Time-mean response over the tropical Pacific to increased CO 2 in a coupled ocean- atmosphere model[J]. Journal of Climate, 8: 2181-2199.
21 KOBERLE C, PHILANDER S G H. 1994. On the processes that control seasonal variations of sea surface temperatures in the tropical Pacific Ocean[J]. Tellus, 46A(4): 481-496.
22 LEVITUS S, ANTONOV JOHN I, WANG JULIAN, et al. 2001. Anthropogenic warming of earth’s climate system[J]. Science, 292: 267-270.
23 LIU ZHENGYU, VARVUS S, HE FENG, et al. 2005. Rethinking tropical oceanic response to global warming: The enhanced equatorial warming[J]. Journal of Climate, 18: 4684-4700.
24 MA JIAN, XIE SHANGPING. 2013. Regional patterns of sea surface temperature change: A source of uncertainty in future projections of precipitation and atmospheric circulation[J]. Journal of Climate, 26: 2482-2501.
25 MA JIAN, XIE SHANGPING, KOSAKA Y U. 2012. Mechanisms for tropical tropospheric circulation change in response to global warming[J]. Journal of Climate, 25: 2979-2994.
26 MANABE S, BRYAN K, SPELMAN M J. 1990. Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide[J]. Journal of Physical Oceanography, 20: 722-749.
27 MEEHL G A, COLLINS W D, BOVILLE B A, et al. 2000. Response of the NCAR climate system model to increased CO 2 and the role of physical processes[J]. Journal of Climate, 13: 1879-1898.
28 MEEHL G A, STOCKER T F, COLLINS W D, et al. 2007a. Global climate projections: Climate change[M]//SOLOMON S, QIN DONG, MANNING M, et al. The Physical Science Basis. Cambridge University Press: 747-845.
29 MEEHL G A, COVEY C, TAYLOR E, et al. 2007b. The WCRP CMIP3 multimodel dataset: A new era in climate change research, Bull[J]. American Meteorological Society, 88: 1383-1394.
30 RICHTER I, XIE SHANGPING. 2008. On the origin of equatorial Atlantic biases in coupled general circulation models[J]. Climate Dynamics, 31: 587-598.
31 RICHTER I, XIE SHANGPING. 2008. The muted precipitation increase in global warming simulations: A surface evaporation perspective[J]. Journal of Geophysical Research, 113: D24118.
32 SAJI N H, GOSWAMI B N, VIAYACHANDRAN P N, et al. 1999. A dipole mode in the tropical Indian Ocean[J]. Nature, 401: 360-363.
33 SCHOTT F A, XIE SHANGPING, MCCREARY J P. 2009. Indian Ocean circulation and climate variability[J]. Reviews of Geophysics, 47: RG1002.
34 STOUFFER R J. 2004. Time scales of climate response[J]. Journal of Climate, 17: 209-217.
35 STOUFFER R J, HODSON D. 2007. Climate response to basin- scale warming and cooling of the North Atlantic Ocean[J]. Journal of Climate, 20: 891-907.
36 TAN PEIHUA, CHOU CHIA, TU JIENYI. 2008. Mechanisms of global warming impacts on robustness of tropical precipitation asymmetry[J]. Journal of Climate, 21: 5585-5602.
37 TANIMOTO Y, NAKAMURA H, KAGIMOTO T, et al. 2003. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux[J]. Journal of Geophysical Research, 108: 3304-3315.
38 VECCHI G A, SODEN B J. 2007. Global warming and the weakening of the tropical circulation[J]. Journal of Climate, 20: 4316-4340.
39 WANG XIN, WANG DONGXIAO, ZHOU WEN. 2009. Decadal variability of twentieth-century El Niño and La Niña occurrence from observations and IPCC AR4 coupled models[J]. Geophysical Research Letters, 36: L11701.
40 WANG DONGXIAO, QIN YINGHAO, XIAO XIANJUN. 2012. El Niño and El Niño Modoki variability based on a new ocean reanalysis[J]. Ocean Dynamics, 62(9): 1311-1322.
41 WANG XIN, WANG CHUNZAI, ZHOU WEN, et al. 2013a. Remote influence of North Atlantic SST on the equatorial westerly wind anomalies in the western Pacific for initiating an El Niño event: An atmospheric general circulation model study[J]. Atmospheric Science Letters, 14(2): 107-111.
42 WANG XIN, ZHOU WEN, WANG DONGXIAO, et al. 2013b. The impacts of the summer Asian jet stream biases on surface air temperature in middle eastern China in IPCC AR4 Models[J]. International Journal of Climatology, 33 (2): 265-276.
43 WEBSTER P J, MAGANA V O, PALMER T N. 1998. Monsoon: Process, predictability and the prospects for prediction[J]. Journal of Geophysical Research, 103: 14451-14510.
44 WEBSTER P J, MOORE A, LOSCHNIGG J, et al. 1999. Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997~98[J]. Nature, 401: 356-360.
45 WU LIXIN, CAI WENJUN, ZHANG LIPING, et al. 2012. Enhanced warming over the global subtropical western boundary currents[J]. Nature, 2: 161-166.
46 XIE SHANGPING, DESER C, VECCHI G A, et al. 2010. Global warming pattern formation: Sea surface temperature and rainfall[J]. Journal of Climate, 23: 966-986.
47 YAMAGATA T, BEHARE S K, LUO JINGJIA, et al. 2004. Coupled ocean-atmosphere variability in the tropical Indian Ocean, in Earth Climate: The ocean-atmosphere interaction [J]. American Geophysical Union, 147: 189-212.
48 YANG JIANLING, LIU QINYU, XIE SHANGPING, et al. 2007. Impact of the Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophysical Research Letters, 34: L02708.
49 ZHENG XIAOTONG, XIE SHANGPING, DU YAN, et al. 2013. Indian Ocean Dipole response to global warming in the CMIP5 multi-model ensemble[J]. Journal of Climate, 26, 6067-6080.
50 ZHOU WEN, CHEN WEN, WANG DONGXIAO. 2012. The implications of El Niño-southern oscillation signal for South China monsoon climate[J]. Aquatic Ecosystem Health and Management, 15(1): 14-19.
文章导航

/