海洋水文学

南海上层环流对不同气候态风场响应的数值研究*

  • 闫桐 ,
  • 齐义泉 ,
  • 经志友
展开
  • 1. 热带海洋环境国家重点实验室(中国科学院南海海洋研究所), 广东 广州 510301;
    2. 中国科学院大学, 北京 100049;
闫桐(1984~), 男, 山东省德州市人, 博士研究生, 主要从事南海环流、潮汐潮流的观测与数值模拟研究。E-mail: yantong@scsio.ac.cn

收稿日期: 2014-11-04

  网络出版日期: 2015-08-21

基金资助

中国科学院战略性先导科技专项(XDA11010203); 国家自然科学基金委-广东省联合基金(U1033003); 国家自然科学基金项目(41276022、41230962、41206010)

A numerical study on the responses of the South China Sea upper circulation to different climatological wind products

  • YAN Tong ,
  • QI Yi-quan ,
  • JING Zhi-you
Expand
  • 1. State Key Laboratory of Tropical Oceanography (South China Sea Institute of Oceanology, Chinese Academy of Sciences),;Guangzhou 510301, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2014-11-04

  Online published: 2015-08-21

Supported by

; *感谢甘子钧先生对本文提出的宝贵意见, 感谢两位匿名审稿人提出的重要修改意见。本文数值模拟工作均在中国科学院南海海洋研究所超算中心完成, 特此表示感谢。

摘要

文章利用4种不同的气候态风场Scatterometer Climatology of Ocean Winds (SCOW)、Climate Forecast System Reanalysis (CFSR)、the Interim ECMWF Re-Analysis (ERA-Interim)和NECP [the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis 1]分别驱动区域海洋环流模式(Regional Ocean Modeling System, ROMS)以模拟南海环流, 从而比较分析南海上层环流模拟结果的差异及其与风应力场之间的动力联系。结果表明, 4种风场均能模拟出南海海盆尺度环流的季节变化特征, 但对南海局地环流特征的模拟存在差异。分析显示, 局地显著的正风应力旋度是冬季吕宋冷涡产生的根本原因; 夏季越南东部海域的上层环流偶极子在模拟试验结果中均显现, 但其强度与局地风应力旋度大小有关。海峡通量的模拟结果显示, 吕宋海峡水体通量受海峡风场差异影响较小; 台湾海峡秋冬季水体通量则有较大差别, 强东北季风不利于海峡北向水体输送。此外, 台湾海峡冬季较强的北向水体输送有利于南海暖流的生成。研究结果对深入理解南海上层环流对大气强迫的响应有裨益, 并且可为不同目的的南海环流数值模拟时的风场选择提供参考。

本文引用格式

闫桐 , 齐义泉 , 经志友 . 南海上层环流对不同气候态风场响应的数值研究*[J]. 热带海洋学报, 2015 , 34(4) : 1 -11 . DOI: 10.11978/j.issn.1009-5470.2015.04.001

Abstract

Four kinds of climatological monthly wind stresses, including SCOW (Scatterometer Climatology of Ocean Winds), CFSR (NCEP Climate Forecast System Reanalysis), ERA-Interim (the Interim ECMWF Re-Analysis), and NCEP [the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis 1] were used to force the South China Sea (SCS) circulation using the Regional Ocean Modeling System (ROMS). The differences among the simulated upper circulation in the SCS from the four experiments and their dynamical relationships with the differences of these wind stresses were explored. Significant differences exist in wind stress and its curl in terms of patterns, and these differences are reflected in the upper-ocean model responses. The results show that seasonal variation of the basin-scale circulation in the SCS can be well represented in all the experiments. The major differences are in sub-basin or mesoscale circulations. It is the significant local positive wind stress curl that leads to the generation of the Luzon cold eddy in winter. The dipole structure of the upper circulation off the Vietnam coast can be clearly seen in all four experiments in summer; but the strength of the dipole varies with the forcing and is related to the local wind stress curl dipole. Moreover, it is shown that the Luzon Strait transports are consistent in the experiments, which indicates that there is little impact from the differences of local wind stresses on the Luzon Strait transport. But the simulated Taiwan Strait transports differ great in both autumn and winter. Strong northeasterly wind impedes the water transport from south to north. Further analysis shows that large northward seawater transport through the Taiwan Strait in winter is in favor of the existence of the SCS warm current (SCSWC) in the northern SCS in the model results. Overall, this study helps us to more deeply understand the responses of upper-ocean circulation in the SCS to atmospheric wind forcing. At the same time, it provides some references to the choice of wind field in simulating the SCS circulation.

参考文献

1 鲍李峰, 陆洋, 王勇, 等. 2005. 利用多年卫星测高资料研究南海上层环流季节特征[J]. 地球物理学报, 48(3): 543-550.
2 蔡树群, 王文质. 1997. 南海东北部及台湾海峡环流机制的数值研究[J], 热带海洋, 16(01): 7-14.
3 方文东, 郭忠信, 黄羽庭. 1997. 南海南部海区的环流观测研究[J]. 科学通报, 42(21): 2264-2271.
4 傅子琅, 胡建宇. 1995. 台湾海峡海流结构及海水通量[J]. 热带海洋, 14(3): 75-80.
5 管秉贤, 陈上及. 1964. 中国近海海流系统[R]//国家科委海洋组办公室. 全国海洋综合调查报告: 第五册 第六章. 国家科委海洋组办公室: 41.
6 李立, 许金电, 靖春生, 等. 2002. 南海海面高度、动力地形和环流的周年变化——TOPEX/Poseidon卫星测高应用研究[J]. 中国科学(D辑: 地球科学), 32(12): 978-986.
7 刘秦玉, 杨海军, 刘征宇. 2000. 南海Sverdrup环流的季节变化特征[J]. 自然科学进展, 10(11): 1035-1039.
8 卢著敏, 尚晓东, 陈桂英. 2008. 混合坐标模式HYCOM模拟COADS强迫下的南海平均环流[J]. 热带海洋学报, 27(4): 23-31.
9 苏纪兰, 王卫. 1990. 南海域台湾暖流源地问题[J]. 东海海洋, 8(3): 1-9.
10 谢强, 王东晓, 王卫强, 等. 2001. 南海几种海面风应力资料的比较分析[J]. 热带海洋学报, 20(1): 91-100.
11 曾庆存, 甘子钧. 1989. 南海月平均流的计算[J]. 大气科学, 13(2): 127-138.
12 CHAO SHENN-YU, SHAW PING-TUNG, WANG JOE. 1995. Wind relaxation as possible cause of the South China Sea Warm Current[J]. J Oceanogr, 51(1): 111-132.
13 CHEN CHANGLIN, WANG GUIHUA. 2014. Interannual variability of the eastward current in the western South China Sea associated with the summer Asian monsoon[J]. J Geophys Res, 119(9): 5745-5754.
14 CHIANG TZU-LING, WU CHAU-RON, CHAO SHENN-YU. 2008. Physical and geographical origins of the South China Sea Warm Current[J]. J Geophys Res, 113(C8): C08028.
15 DA SILVA A M, YOUNG C C, LEVITUS S. 1994. Algorithms and procedures, atlas of surface marine data[R]. NOAA Atlas NESDIS 6.1: 74.
16 DEE D P, UPPALA S M, SIMMONS A J, et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 137(656): 553-597.
17 FAN CONGHUI, WANG JUANJUAN, SONG JINBAO. 2010. Factors influencing the climatological mixed layer depth in the South China Sea: numerical simulations[J]. Chin J Ocean Limnol, 28(5): 1112-1118.
18 FANG GUOHONG, WANG GANG, FANG YUE, et al. 2012. A review on the South China Sea western boundary current[J]. Acta Oceanol Sin, 31(5): 1-10.
19 FU L-L, CHAO YI. 1997. The sensitivity of a global ocean model to wind forcing: A test using sea level and wind observations from satellites and operational wind analysis[J]. Geophys Res Lett, 24(14): 1783-1786.
20 GUO XINYU. 1999. On the volume transport of the Taiwan Strait[C]. Proceeding of 10th PAM & JECSS Workshop, Kagoshima, Japan: 2-12.
21 HOGAN P J, HURLBURT H E. 2005. Sensitivity of simulated circulation dynamics to the choice of surface wind forcing in the Japan/East Sea[J]. Deep Sea Res Part II: Top Stud Oceanogr, 52(11-13): 1464-1489.
22 HSIN YI-CHIA, WU CHAU-RON, CHAO SHENN-YU. 2012. An updated examination of the Luzon Strait transport[J]. J Geophys Res, 117(C3): C03022.
23 HSUEH Y, ZHONG LIEJUN. 2004. A pressure-driven South China Sea Warm Current[J]. J Geophys Res, 109(C9): C09014.
24 HU JIANYU, KAWAMURA H, LI CHUNYAN, et al. 2010. Review on current and seawater volume transport through the Taiwan Strait[J]. J Oceanogr, 66: 591-610.
25 ISOBE A. 2008. Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves[J]. J Oceanogr, 64(4): 569-584.
26 KALNAY E, KANAMITSU M, KISTLER R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteor Soc, 77(3): 437-471.
27 KARA A B, HURLBURT H E, WALLCRAFT A J, et al. 2005. Black Sea mixed layer sensitivity to various wind and thermal forcing products on climatological time scales[J]. J Climate, 18(24): 5266-5293.
28 LEMARIé F, KURIAN J, SHCHEPETKIN A F, et al. 2012. Are there inescapable issues prohibiting the use of terrain- following coordinates in climate models?[J]. Ocean Model, 42(0): 57-79.
29 LI YUANLONG, HAN WEIQING, WILKIN J L, et al. 2014. Interannual variability of the surface summertime eastward jet in the South China Sea[J]. J Geophys Res.
30 MARCHESIELLO P, MCWILLIAMS J C, SHCHEPETKIN A. 2001. Open boundary conditions for long-term integration of regional oceanic models[J]. Ocean Model, 3(1): 1-20.
31 METZGER E J, HURLBURT H E. 1996. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean[J]. J Geophys Res, 101(C5): 12331-12352.
32 METZGER E J. 2003. Upper ocean sensitivity to wind forcing in the South China Sea[J]. J Oceanogr, 59(6): 783-798.
33 NENCIOLI F, DONG CHANGMING, DICKEY T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight[J]. J. Atmos Ocean Tech, 27(3): 564-579.
34 QU TANGDONG. 2000. Upper-layer circulation in the South China Sea[J]. J Phys Oceanogr, 30(6): 1450-1460.
35 RISIEN C M, CHELTON D B. 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data[J]. J Phys Oceanogr, 38(11): 2379-2413.
36 SAHA S, MOORTHI S, PAN H-L, et al. 2010. The NCEP climate forecast system reanalysis[J]. Bull Amer Meteor Soc, 91(8): 1015-1057.
37 SHAW PING-TUNG, CHAO SHENN-YU, LIU KON-KEE, et al. 1996. Winter upwelling off Luzon in the northeastern South China Sea[J]. J Geophys Res, 101(C7): 16435-16448.
38 SHAW PING-TUNG, CHAO SHENN-YU, FU LEE-LUENG. 1999. Sea surface height variations in the South China Sea from satellite altimetry[J]. Oceanologica Acta, 22(1): 1-17.
39 SHCHEPETKIN A F, MCWILLIAMS J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free- surface, topography-following-coordinate oceanic model[J]. Ocean Model, 9(4): 347-404.
40 TANG DAN-LING, NI I-HSUN, DANA R K, et al. 1999. Remote sensing observations of winter phytoplankon blooms southwest of the Luzon Strait in the South China Sea[J]. Mar Ecol Prog Ser, 191: 43-51.
41 TIAN JIWEI, YANG QINGXUAN, LIANG XINFENG, et al. 2006. Observation of Luzon Strait transport[J]. Geophys Res Lett, 33(19): L19607.
42 TOWNSEND T L, HURLBURT H E, HOGAN P J. 2000. Modeled sverdrup flow in the North Atlantic from 11 different wind stress climatologies[J]. Dyn Atmos Oceans, 32(3-4): 373-417.
43 WANG DONGXIAO, HONG BO, GAN JIANPING, et al. 2010. Numerical investigation on propulsion of the counter-wind current in the northern South China Sea in winter[J]. Deep Sea Res Part Ⅰ, 57(10): 1206-1221.
44 WANG GUIHUA, CHEN DAKE, SU JILAN. 2006. Generation and life cycle of the dipole in the South China Sea summer circulation[J]. J Geophys Res, 111(C6): C06002.
45 WANG GUIHUA, CHEN DAKE, SU JILAN. 2008. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. J Phys Oceanogr, 38: 726-732.
46 WANG GUIHUA, WANG CHUNZAI, HUANG RUIXIN. 2010. Interdecadal variability of the eastward current in the South China Sea associated with the summer Asian monsoon[J]. J Climate, 23(22): 6115-6123.
47 WANG QIANG, WANG YINXIA, HONG BO, et al. 2011. Different roles of Ekman pumping in the west and east segments of the South China Sea Warm Current[J]. Acta Oceanol Sin, 30(03): 1-13.
48 WANG QINGYE, CUI HONG, ZHANG SHUWEN, et al. 2009. Water transports through the four main straits around the South China Sea[J]. Chin J Oceanol Limnol, 27(2): 229-236.
49 WU CHAU-RON, SHAW PING-TUNG, CHAO SHENN-YU. 1999. Assimilating altimetric data into a South China Sea model[J]. J Geophys Res, 104(C12): 29987-30005.
50 XIE SHANG-PING, XIE QIANG, WANG DONGXIAO, et al. 2003. Summer upwelling in the South China Sea and its role in regional climate variations[J]. J Geophys Res, 108(C8): 3261.
51 YANG HAIJUN, LIU QINYU. 2003. Forced Rossby wave in the northern South China Sea[J]. Deep Sea Res Part I, 50(7): 917-926.
52 YANG JIAYAN, WU DEXING, LIN XIAOPEI. 2008. On the dynamics of the South China Sea Warm Current[J]. J Geophys Res, 113(C8): C08003.
53 YE LONGFEI. 1994. On the mechanism of South China Sea Warm Current and Kuroshio Branch in winter preliminary results of 3-D baroclinic experiments[J]. Terr Atmos Ocean Sci, 5(4): 597-610.

文章导航

/